April 23, 2004 Name

There are 115 points available on this test. Each question is marked with its value. To get full credit for a problem, you must **show your work**. Correct answers with incorrect supporting work will receive substantially reduced credit.

Calculus

1. (20 points) A car A is traveling west at 40 miles per hour while car B is traveling north at 50 miles per hour. At exactly noon, car A is 3 miles east of an intersection P and car B is 4 miles south of P. At what speed are the cars moving toward each other?

Solution: Orient the problem so that P is the origin. Then car A's position at noon is (3,0) and car B's position is (0,-4). Since A is moving west, it follows that $\frac{dA}{dt} = -40$ mile per hour and $\frac{dB}{dt} = 50$ mile per hour. The distance between the cars is given by $D(t) = (A^2 + B^2)^{1/2}$. Thus

$$\frac{dD}{dt} = \frac{1}{2}(A^2 + B^2)^{-1/2} \cdot (2A\frac{dA}{dt} + 2B\frac{dB}{dt})
= \frac{1}{2}(3^2 + (-4)^2)^{-1/2} \cdot (2 \cdot 3(-40) + 2 \cdot (-4) \cdot 30)
= \frac{1}{2}\frac{1}{5}(-240 - 400)
= -640/10 = -64$$

miles per hour.

- 2. (20 points) A particle is moving along the curve $y^2 = x^3 2xy + 3x^2 + 1$.
 - (a) Show that the point (2,3) belongs to the curve. Solution: Note that $3^2 = 2^3 - 2 \cdot 2 \cdot 3 + 3 \cdot 2^2 + 1 = 9$.
 - (b) Find the slope of the line tangent to the curve at (2,3). **Solution:** Differentiate both sides with respect to x to get $2yy' = 3x^2 - 2y - 2xy' + 6x$ and solving this for y' yields $y' = \frac{3x^2 - 2y + 6x}{2y + 2x}$ which we evaluate at (2,3) to get $y' = 3 \cdot 2^2 - 2 \cdot 3 + 6 \cdot 2 \div (2 \cdot 3 + 2 \cdot 2) = 9/5$.
 - (c) If $\frac{dx}{dt} = 5$ at the point (2,3), what is $\frac{dy}{dt}$ at (2,3)? **Solution:** Differentiate both sides with respect to t to get $2yy' = 3x^2x' - 2x'y - 2xy' + 6xx'$. Replace $x' = \frac{dx}{dt}$ with 2 and replace x and y with their values to get $2 \cdot 3 \cdot y' = 3 \cdot 2^2 \cdot 5 - 2 \cdot 5 \cdot 3 - 2 \cdot 2 \cdot y' + 6 \cdot 2 \cdot 5$. Thus 6y' + 4y' = 60 - 30 + 60 = 90 from which it follows that $\frac{dy}{dt} = 90/10 = 9$.

3. (20 points) Consider the function $f(x) = \frac{\cos x}{2 + \sin x}$ defined over the interval $[0, 2\pi]$.

(a) Find f'(x).Solution: By the quotient rule,

$$f'(x) = \frac{-\sin x(2+\sin x) - \cos x(\cos x)}{(2+\sin x)^2} = \frac{-2\sin x - 1}{(2+\sin x)^2}$$

- (b) Find the critical points of f.
 Solution: The only zero of f'(x) occurs when sin x = -1/2 which is true when x = π + π/6 = 7π/6 and x = 2π π/6 = 11π/6
- (c) Identify each critical point as a location where a max, a min, or neither occurs.

Solution: Use the test interval technique with f' on the interval $[0, 2\pi]$, noting that $f'(\pi) < 0, f'(3\pi/2) > 0$, and $f'(2\pi^-) < 0$. Thus f has a relative minimum at $x = 7\pi/6 \approx 3.665$ and a relative maximum at $x = 11\pi/6 \approx 5.759$.

(d) Find the absolute maximum and absolute minimum of f.

Solution: Comparing the value of f at the endpoints and the two critical points, we find f(0) = 1/2, $f(2\pi) = 1/2$, $f(7\pi/6) = -1/\sqrt{3}$, and $f(11\pi/6) = 1/\sqrt{3} \approx 0.5773$, so the min occurs at $x = 7\pi/6$ and the max occurs at $x = 11\pi/6$.

- 4. (15 points) The mean value theorem (MVT) states that if f is differentiable over [a, b], then there is a number c in (a, b) such that f'(c) is the slope of the line joining (a, f(a)) and (b, f(b)).
 - (a) Does the MVT apply to the function $f(x) = x \ln x$ on the interval [1, e]. Solution: Yes, MVT applies because f is differentiable on (1, e) and continuous at both 1 and e.
 - (b) If not tell why. If so, find the number c. **Solution:** Note that $\frac{f(e)-f(1)}{e-1} = \frac{e \ln e - 1 \ln 1}{e-1} = \frac{e}{e-1}$. So we need to find a number c in the interval satisfying $f'(c) = \frac{e}{e-1}$. Since $f'(x) = \ln x + 1$, we need to find c such that $\ln c + 1 = \frac{e}{e-1}$. This gives $\ln c = \frac{e}{e-1} - 1 = \frac{1}{e-1}$. We can interpret $\ln c$ to get $c = e^{\frac{1}{e-1}} \approx 1.7895$.

5. (20 points) Suppose f is a differentiable function and suppose f'' is given by

$$f''(x) = \frac{(x^2 - 4)(x + 5)}{(x + 2)(x + 1)}.$$

Find the intervals over which f is concave up. No credit for calculator solutions.

Solution: First, reduce f'' by removing the common factors to get $f''(x) = \frac{(x-2)(x+5)}{x+1}$. Of course, we have slightly enlarged the domain of f'' in doing this. There are three branch points, x = 2, x = -5 and x = -1 to consider. Use the test interval technique to solve the inequality f''(x) > 0. I used the test points -6, -2, 0, and 3 and found that f''(-6) < 0, f''(-2) > 0, f''(0) < 0, and f''(3) > 0. Thus f is concave upwards on the two intervals (-5, -1) and $(2, \infty)$.

- 6. (20 points) Evaluate each of the following limits:
 - (a) $\lim_{x \to -1} \frac{x^2 1}{x + 1}$

Solution: One way to evaluate this limit is by factoring. Another is to apply L'Hospital's Rule and differentiate both numerator and denomina $x^2 - 1$ $x^2 - 1$ $x^2 - 1$

tor.
$$\lim_{x \to -1} \frac{1}{x+1} = \lim_{x \to -1} \frac{1}{1} = -2$$

(b)
$$\lim_{x \to 0} \frac{x + \tan x}{\sin x}$$
Solution: Apply L'Hospital's Rule and differentiate both numerator and denominator to get
$$\lim_{x \to -1} \frac{x + \tan x}{\sin x} = \lim_{x \to -1} \frac{1 + \sec^2 x}{\cos x} = 2$$

(c)
$$\lim_{x \to \infty} x^3 e^{-x^2}$$

Solution: Apply L'Hospital's Rule repeatedly to get

$$\lim_{x \to \infty} x^3 e^{-x^2} = \lim_{x \to \infty} x^3 / e^{x^2}$$

=
$$\lim_{x \to \infty} 3x^2 / 2x e^{x^2}$$

=
$$\lim_{x \to \infty} 6x / (2e^{x^2} + 4x^2 e^{x^2})$$

=
$$\lim_{x \to \infty} 6/(4x e^{x^2} + 8x e^{x^2} + 8x^3 e^{x^2}) = 0$$

(d) $\lim_{x \to 0} (1 - 2x)^{\frac{1}{x}}$

Solution: Take ln of the expression to get a fraction. Note that

$$\lim_{x \to 0} \ln((1-2x)^{\frac{1}{x}}) = \lim_{x \to 0} \frac{1}{x} \ln((1-2x)) = \lim_{x \to 0} \frac{\ln((1-2x))}{x}.$$

Next apply L'hospital's rule to get $\lim_{x\to 0} \frac{\ln((1-2x))}{x} = \lim_{x\to 0} \frac{-2/(1-2x)}{1} = -2$. Therefore, the original limit must be e^{-2} .