April 23, $2004 \quad$ Name

There are 115 points available on this test. Each question is marked with its value. To get full credit for a problem, you must show your work. Correct answers with incorrect supporting work will receive substantially reduced credit.

1. (20 points) A car A is traveling west at 40 miles per hour while car B is traveling north at 50 miles per hour. At exactly noon, car A is 3 miles east of an intersection P and car B is 4 miles south of P. At what speed are the cars moving toward each other?
Solution: Orient the problem so that P is the origin. Then car A 's position at noon is $(3,0)$ and car B 's position is $(0,-4)$. Since A is moving west, it follows that $\frac{d A}{d t}=-40$ mile per hour and $\frac{d B}{d t}=50$ mile per hour. The distance between the cars is given by $D(t)=\left(A^{2}+B^{2}\right)^{1 / 2}$. Thus

$$
\begin{aligned}
\frac{d D}{d t} & =\frac{1}{2}\left(A^{2}+B^{2}\right)^{-1 / 2} \cdot\left(2 A \frac{d A}{d t}+2 B \frac{d B}{d t}\right) \\
& =\frac{1}{2}\left(3^{2}+(-4)^{2}\right)^{-1 / 2} \cdot(2 \cdot 3(-40)+2 \cdot(-4) \cdot 30) \\
& =\frac{1}{2} \frac{1}{5}(-240-400) \\
& =-640 / 10=-64
\end{aligned}
$$

miles per hour.
2. (20 points) A particle is moving along the curve $y^{2}=x^{3}-2 x y+3 x^{2}+1$.
(a) Show that the point $(2,3)$ belongs to the curve.

Solution: Note that $3^{2}=2^{3}-2 \cdot 2 \cdot 3+3 \cdot 2^{2}+1=9$.
(b) Find the slope of the line tangent to the curve at $(2,3)$.

Solution: Differentiate both sides with respect to x to get $2 y y^{\prime}=3 x^{2}-$ $2 y-2 x y^{\prime}+6 x$ and solving this for y^{\prime} yields $y^{\prime}=\frac{3 x^{2}-2 y+6 x}{2 y+2 x}$ which we evaluate at $(2,3)$ to get $y^{\prime}=3 \cdot 2^{2}-2 \cdot 3+6 \cdot 2 \div(2 \cdot 3+2 \cdot 2)=9 / 5$.
(c) If $\frac{d x}{d t}=5$ at the point $(2,3)$, what is $\frac{d y}{d t}$ at $(2,3)$?

Solution: Differentiate both sides with respect to t to get $2 y y^{\prime}=3 x^{2} x^{\prime}-$ $2 x^{\prime} y-2 x y^{\prime}+6 x x^{\prime}$. Replace $x^{\prime}=\frac{d x}{d t}$ with 2 and replace x and y with their values to get $2 \cdot 3 \cdot y^{\prime}=3 \cdot 2^{2} \cdot 5-2 \cdot 5 \cdot 3-2 \cdot 2 \cdot y^{\prime}+6 \cdot 2 \cdot 5$. Thus $6 y^{\prime}+4 y^{\prime}=60-30+60=90$ from which it follows that $\frac{d y}{d t}=90 / 10=9$.
3. (20 points) Consider the function $f(x)=\frac{\cos x}{2+\sin x}$ defined over the interval $[0,2 \pi]$.
(a) Find $f^{\prime}(x)$.

Solution: By the quotient rule,

$$
f^{\prime}(x)=\frac{-\sin x(2+\sin x)-\cos x(\cos x)}{(2+\sin x)^{2}}=\frac{-2 \sin x-1}{(2+\sin x)^{2}} .
$$

(b) Find the critical points of f.

Solution: The only zero of $f^{\prime}(x)$ occurs when $\sin x=-1 / 2$ which is true when $x=\pi+\pi / 6=7 \pi / 6$ and $x=2 \pi-\pi / 6=11 \pi / 6$
(c) Identify each critical point as a location where a max, a min, or neither occurs.
Solution: Use the test interval technique with f^{\prime} on the interval $[0,2 \pi]$, noting that $f^{\prime}(\pi)<0, f^{\prime}(3 \pi / 2)>0$, and $f^{\prime}\left(2 \pi^{-}\right)<0$. Thus f has a relative minimum at $x=7 \pi / 6 \approx 3.665$ and a relative maximum at $x=$ $11 \pi / 6 \approx 5.759$.
(d) Find the absolute maximum and absolute minimum of f.

Solution: Comparing the value of f at the endpoints and the two critical points, we find $f(0)=1 / 2, f(2 \pi)=1 / 2, f(7 \pi / 6)=-1 / \sqrt{3}$, and $f(11 \pi / 6)=1 / \sqrt{3} \approx 0.5773$, so the min occurs at $x=7 \pi / 6$ and the max occurs at $x=11 \pi / 6$.
4. (15 points) The mean value theorem (MVT) states that if f is differentiable over $[a, b]$, then there is a number c in (a, b) such that $f^{\prime}(c)$ is the slope of the line joining $(a, f(a))$ and $(b, f(b))$.
(a) Does the MVT apply to the function $f(x)=x \ln x$ on the interval $[1, e]$.

Solution: Yes, MVT applies because f is differentiable on $(1, e)$ and continuous at both 1 and e.
(b) If not tell why. If so, find the number c.

Solution: Note that $\frac{f(e)-f(1)}{e-1}=\frac{e \ln e-1 \ln 1}{e-1}=\frac{e}{e-1}$. So we need to find a number c in the interval satisfying $f^{\prime}(c)=\frac{e}{e-1}$. Since $f^{\prime}(x)=\ln x+1$, we need to find c such that $\ln c+1=\frac{e}{e-1}$. This gives $\ln c=\frac{e}{e-1}-1=\frac{1}{e-1}$. We can interpret $\ln c$ to get $c=e^{\frac{1}{e^{-1}}} \approx 1.7895$.
5. (20 points) Suppose f is a differentiable function and suppose $f^{\prime \prime}$ is given by

$$
f^{\prime \prime}(x)=\frac{\left(x^{2}-4\right)(x+5)}{(x+2)(x+1)}
$$

Find the intervals over which f is concave up. No credit for calculator solutions.

Solution: First, reduce $f^{\prime \prime}$ by removing the common factors to get $f^{\prime \prime}(x)=$ $\frac{(x-2)(x+5)}{x+1}$. Of course, we have slightly enlarged the domain of $f^{\prime \prime}$ in doing this. There are three branch points, $x=2, x=-5$ and $x=-1$ to consider. Use the test interval technique to solve the inequality $f^{\prime \prime}(x)>0$. I used the test points $-6,-2,0$, and 3 and found that $f^{\prime \prime}(-6)<0, f^{\prime \prime}(-2)>0, f^{\prime \prime}(0)<0$, and $f^{\prime \prime}(3)>0$. Thus f is concave upwards on the two intervals $(-5,-1)$ and $(2, \infty)$.
6. (20 points) Evaluate each of the following limits:
(a) $\lim _{x \rightarrow-1} \frac{x^{2}-1}{x+1}$

Solution: One way to evaluate this limit is by factoring. Another is to apply L'Hospital's Rule and differentiate both numerator and denominator. $\lim _{x \rightarrow-1} \frac{x^{2}-1}{x+1}=\lim _{x \rightarrow-1} \frac{2 x}{1}=-2$
(b) $\lim _{x \rightarrow 0} \frac{x+\tan x}{\sin x}$

Solution: Apply L'Hospital's Rule and differentiate both numerator and denominator to get $\lim _{x \rightarrow-1} \frac{x+\tan x}{\sin x}=$

$$
\lim _{x \rightarrow-1} \frac{1+\sec ^{2} x}{\cos x}=2
$$

(c) $\lim _{x \rightarrow \infty} x^{3} e^{-x^{2}}$

Solution: Apply L'Hospital's Rule repeatedly to get

$$
\begin{aligned}
\lim _{x \rightarrow \infty} x^{3} e^{-x^{2}} & =\lim _{x \rightarrow \infty} x^{3} / e^{x^{2}} \\
& =\lim _{x \rightarrow \infty} 3 x^{2} / 2 x e^{x^{2}} \\
& =\lim _{x \rightarrow \infty} 6 x /\left(2 e^{x^{2}}+4 x^{2} e^{x^{2}}\right) \\
& =\lim _{x \rightarrow \infty} 6 /\left(4 x e^{x^{2}}+8 x e^{x^{2}}+8 x^{3} e^{x^{2}}\right)=0
\end{aligned}
$$

(d) $\lim _{x \rightarrow 0}(1-2 x)^{\frac{1}{x}}$

Solution: Take \ln of the expression to get a fraction. Note that

$$
\lim _{x \rightarrow 0} \ln \left((1-2 x)^{\frac{1}{x}}\right)=\lim _{x \rightarrow 0} \frac{1}{x} \ln \left((1-2 x)=\lim _{x \rightarrow 0} \frac{\ln ((1-2 x)}{x} .\right.
$$

Next apply L'hospital's rule to get $\lim _{x \rightarrow 0} \frac{\ln ((1-2 x)}{x}=$
$\lim _{x \rightarrow 0} \frac{-2 /(1-2 x)}{1}=-2$. Therefore, the original limit must be e^{-2}.

