March 26, $2004 \quad$ Name
There are 135 points available on this test. Each question is marked with its value. To get full credit for a problem, you must show your work. Correct answers with incorrect supporting work will receive substantially reduced credit.

1. (15 points) Let $p(x)=x^{2}-4 x+5$.
(a) Compute $p^{\prime}(x)$

Solution: $p^{\prime}(x)=2 x-4$.
(b) Compute $p^{\prime \prime}(x)$

Solution: $p^{\prime \prime}(x)=2$
(c) Use the information in (a) to find an equation for the line tangent to the graph of p at the point $(1,2)$.
Solution: $y-2=p^{\prime}(1)(x-1)=-2(x-1)$, so $y=-2 x+4$.
2. (20 points) Consider the astroid $x^{2 / 3}+y^{2 / 3}=4$.
(a) Show that the point $(-3 \sqrt{3}, 1)$ belongs to the graph.

Solution: $(-3 \sqrt{3})^{2 / 3}+1^{2 / 3}=(9 \cdot 3)^{1 / 3}+1=4$.
(b) Find y^{\prime} as a function of x and y using implicit differentiation.

Solution: Differentiate both sides to get $\frac{2}{3} x^{-1 / 3}+\frac{2}{3} y^{1 / 3} \cdot y^{\prime}=0$, so $y^{\prime}=\frac{-\frac{2}{3} x^{-1 / 3}}{\frac{2}{3} y^{-1 / 3}}=-\left(\frac{y}{x}\right)^{1 / 3}$.
(c) Find the slope of the line tangent to the curve at the point $(-3 \sqrt{3}, 1)$.

Solution: $m=-\left(\frac{1}{-3 \sqrt{3}}\right)^{1 / 3}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3} \approx 0.5773$.
(d) Find an equation for the tangent line whose slope you found above.

Solution: Use the point-slope form to get $y-1=\frac{\sqrt{3}}{3}(x+3 \sqrt{3})=\frac{\sqrt{3} x}{3}+3$.
Thus, $y=\frac{\sqrt{3} x}{3}+4$
3. (30 points) Suppose the functions f and g are given partially by the table of values shown. The next problems refer to the functions f and g given in the tables. Consider the table of values given for the functions f, f^{\prime}, g, and g^{\prime} :

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
0	3	2	5	2
1	3	5	2	6
2	5	3	4	1
3	6	4	3	4
4	4	6	1	5
5	1	3	2	4
6	1	2	5	3

(a) Let $K(x)=f \circ g(x)$. Compute $K^{\prime}(3)$

Solution: $K^{\prime}(3)=f^{\prime}(g(3)) \cdot g^{\prime}(3)=f^{\prime}(3) \cdot g^{\prime}(3)=16$.
(b) Let $L(x)=f(x) \cdot g(x)$. Compute $L^{\prime}(2)$.

Solution: $L^{\prime}(2)=f^{\prime}(2) g(2)+g^{\prime}(2) f(2)=17$.
(c) Let $U(x)=f \circ f(x)$. Compute $U^{\prime}(1)$.

Solution: $U^{\prime}(1)=f^{\prime}(f(1)) \cdot f^{\prime}(1)=f^{\prime}(3) \cdot f^{\prime}(1)=4 \cdot 5=20$.
(d) Let $V(x)=g(x) / f(x)$. Compute $V^{\prime}(4)$.

Solution: $V^{\prime}(4)=\frac{g^{\prime}(4) f(4)-f^{\prime}(4) g(4)}{f(4)^{2}}=\frac{5 \cdot 4-6 \cdot 1}{16}=\frac{14}{16}=\frac{7}{8}$.
(e) Let $W(x)=(g(x))^{2}$. Compute $W^{\prime}(5)$.

Solution: $W^{\prime}(5)=2 g(5) g^{\prime}(5)=2 \cdot 2 \cdot 4=16$.
(f) Let $Z(x)=g\left(x^{2} \cdot f(x)\right)$. Compute $Z^{\prime}(1)$.

Solution: $Z^{\prime}(1)=g^{\prime}\left(1^{2} f(1)\right)\left(2 \cdot 1 f(1)+f^{\prime}(1) \cdot 1^{2}\right)=g^{\prime}(3)(2 \cdot 3+5)=$ $4 \cdot 11=44$.
4. (25 points)
(a) Find $\frac{d}{d x}(\sin x)$

Solution: $\frac{d}{d x}(\sin x)=\cos x$
(b) Write an equation involving the functions \sin and $\sin ^{-1}$, the composition operation, and the identity function. In other words write an equation that shows you know what $\sin ^{-1} x$ is.
Solution: $\sin \circ \sin ^{-1}(x)=x$ or $\sin \left(\sin ^{-1}(x)\right)=x$.
(c) Differentiate both sides of the equation in (b).

Solution: Let $y=\sin ^{-1}(x)$. By the chain rule, $\cos (y) \cdot y^{\prime}=1$, so $y^{\prime}=1 / \cos y=1 / \cos \left(\sin ^{-1}(x)\right)$.
(d) Use the result in (c) to find an expression for $\frac{d}{d x}\left(\sin ^{-1} x\right)$.

Solution: Using the triangle with sides $x, \sqrt{1-x^{2}}$, and 1 , it follows that $\frac{d}{d x}\left(\sin ^{-1} x\right)=1 / \sqrt{1-x^{2}}$.
(e) Let $h(x)=\sin ^{-1}\left(x^{2}\right)$. Compute $h^{\prime}(x)$.

Solution: Using the chain rule, $h^{\prime}(x)=\frac{1}{\sqrt{1-\left(x^{2}\right)^{2}}} \cdot 2 x=\frac{2 x}{\sqrt{1-x^{4}}}$.
5. (25 points) Compute the following derivatives.
(a) $\frac{d}{d x} e^{\sin x}$

Solution: $\frac{d}{d x} e^{\sin x}=e^{\sin x} \cdot \cos x$
(b) $\frac{d}{d x} \ln (\tan x)$

Solution: $\frac{d}{d x} \ln (\tan x)=\frac{1}{\tan x} \cdot \sec ^{2} x=\csc x \cdot \sec x$.
(c) $\frac{d}{d x} \sqrt{x}(\ln x)$

Solution: $\frac{d}{d x} \sqrt{x}(\ln x)=\frac{1}{2} x^{-1 / 2} \ln x+\frac{\sqrt{x}}{x}=\frac{1}{\sqrt{x}}\left(\frac{\ln x}{2}+1\right)$.
(d) $\frac{d}{d x}\left(\cos \left(x^{2}\right)\right)^{3}$

Solution: This is a triple composition, so you use the chair rule twice:
$\frac{d}{d x}\left(\cos \left(x^{2}\right)\right)^{3}=-3\left(\cos x^{2}\right)^{2} \cdot \sin x^{2} \cdot 2 x$.
(e) $\frac{d}{d x} \tan ^{-1}(2 x)$

Solution: $\frac{d}{d x} \tan ^{-1}(2 x)=\frac{1}{1+(2 x)^{2}} \cdot 2=\frac{2}{1+4 x^{2}}$.
6. (20 points) Suppose f is defined by:

$$
f(x)= \begin{cases}\ln (3 x) & \text { if } x>0 \\ \ln (-x) & \text { if } x<0\end{cases}
$$

(a) Find $f^{\prime}(3)$.

Solution: Near $x=3, f^{\prime}(x)=\frac{1}{3 x} \cdot 3$, so $f^{\prime}(3)=1 / 3$.
(b) Find $f^{\prime}(-e)$.

Solution: Near $-e, f^{\prime}(x)=(1 /-x) \cdot-1=1 / x$, so $f^{\prime}(-e)=-1 / e$.
(c) Find an equation for the line tangent to the graph of f at the point $(-e, f(-e))$.
Solution: Since $m=-1 / e$ and $f(-e)=\ln (-(-e))=1$, it follows that an equation for the line is $y-1=-\frac{x}{e}-1$, or $y=-\frac{x}{e}$.

