March 26, 2004 Name

There are 135 points available on this test. Each question is marked with its value. To get full credit for a problem, you must **show your work**. Correct answers with incorrect supporting work will receive substantially reduced credit.

Calculus

- 1. (15 points) Let $p(x) = x^2 4x + 5$.
 - (a) Compute p'(x)
 - (b) Compute p''(x)
 - (c) Use the information in (a) to find an equation for the line tangent to the graph of p at the point (1, 2).
- 2. (20 points) Consider the *astroid* $x^{2/3} + y^{2/3} = 4$.
 - (a) Show that the point $(-3\sqrt{3}, 1)$ belongs to the graph.
 - (b) Find y' as a function of x and y using implicit differentiation.
 - (c) Find the slope of the line tangent to the curve at the point $(-3\sqrt{3}, 1)$.
 - (d) Find an equation for the tangent line whose slope you found above.

3. (30 points) Suppose the functions f and g are given partially by the table of values shown. The next problems refer to the functions f and g given in the tables. Consider the table of values given for the functions f, f', g, and g':

$x \mid$	f(x)	f'(x)	g(x)	g'(x)
0	3	2	5	2
1	3	5	2	6
2	5	3	4	1
3	6	4	3	4
4	4	6	1	5
5	1	3	2	4
6	1	2	5	3

(a) Let $K(x) = f \circ g(x)$. Compute K'(3)

- (b) Let $L(x) = f(x) \cdot g(x)$. Compute L'(2).
- (c) Let $U(x) = f \circ f(x)$. Compute U'(1).
- (d) Let V(x) = g(x)/f(x). Compute V'(4).
- (e) Let $W(x) = (g(x))^2$. Compute W'(5).
- (f) Let $Z(x) = g(x^2 \cdot f(x))$. Compute Z'(1).

- 4. (25 points)
 - (a) Find $\frac{d}{dx}(\sin x)$
 - (b) Write an equation involving the functions sin and \sin^{-1} , the composition operation, and the identity function. In other words write an equation that shows you know what $\sin^{-1} x$ is.
 - (c) Differentiate both sides of the equation in (b).
 - (d) Use the result in (c) to find an expression for $\frac{d}{dx}(\sin^{-1}x)$.
 - (e) Let $h(x) = \sin^{-1}(x^2)$. Compute h'(x).

- 5. (25 points) Compute the following derivatives.
 - (a) $\frac{d}{dx}e^{\sin x}$

(b) $\frac{d}{dx} \ln(\tan x)$

(c) $\frac{d}{dx}\sqrt{x}(\ln x)$

(d) $\frac{d}{dx}(\cos(x^2))^3$

(e) $\frac{d}{dx} \tan^{-1}(2x)$

6. (20 points) Suppose f is defined by:

$$f(x) = \begin{cases} \ln(3x) & \text{if } x > 0\\ \ln(-x) & \text{if } x < 0 \end{cases}$$

(a) Find f'(3).

(b) Find f'(-e).

(c) Find an equation for the line tangent to the graph of f at the point (-e, f(-e)).