Your name
There are $1 \overline{34}$ points available on this test. You must show all your work.

1. (20 points) Let P denote the compound proposition defined by $P:(p \rightarrow q) \rightarrow$ r and let $Q: p \rightarrow(q \rightarrow r)$. Test the associativity of \rightarrow by determining whether P and Q are logically equivalent.
2. (24 points) Determine the truth value of the following statements if the universe of discourse of each variable is the set of real numbers.
_1. $\forall x \exists y\left(x=y^{2}\right)$
_-2. $\forall x \exists y((x+y=2) \wedge(2 x-y=1))$
_3. $\exists x\left(x^{2}=-1\right)$
_-4. $\forall x \neq 0 \exists y(x y=1)$
__5. $\exists x \exists y(x+y \neq y+x)$
_6. $\forall x \exists y(x+y=1)$
_-7. $\exists x\left(x^{2}=2\right)$
——8. $\exists x \forall y \neq 0(x y=1)$
-_9. $\forall x \forall y \exists z\left(z=\frac{x+y}{2}\right)$
_-10. $\exists x \exists y((x+2 y=2) \wedge(2 x+4 y=5))$
_-11. $\exists x \forall y(x y=0)$
_12. $\forall x \exists y\left(x^{2}=y\right)$
3. (20 points) Let D denote the set of all real numbers and let P and Q denote the two-place predicates on D defined by $P(x, y): x \leq y$ and $Q(x, y): y \leq x$. Find the truth value of each of the compound propositions.
(a) $\forall x \forall y(P(x, y) \wedge Q(x, y)) \rightarrow x=y$.
(b) $\forall x \forall y(P(x, y) \rightarrow-Q(x, y))$.
(c) $\forall x \exists y(P(x, y) \rightarrow Q(x, y))$.
(d) $\forall x \forall y(P(x, y) \vee Q(x, y)) \rightarrow x \neq y$.
(e) $\forall x \forall y x \neq y \leftrightarrow(-P(x, y) \vee-Q(x, y))$.
4. (20 points) Notice that

$$
\begin{align*}
\frac{1}{1 \cdot 2} & =\frac{1}{2} \tag{1}\\
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3} & =\frac{2}{3} \tag{2}\\
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4} & =\frac{3}{4} \tag{3}
\end{align*}
$$

(a) List the next two equations suggested by the pattern.
(b) Given that the three equations above are the $1^{\text {st }}, 2^{\text {nd }}$, and $3^{\text {rd }}$, write the $n^{t h}$ equation of the sequence.
(c) Use mathematical induction to prove that the $n^{\text {th }}$ equation is true for all positive integer values of n.
5. (20 points) Prove that $4^{n}-1$ is divisible by 3 for all $n \geq 1$.
6. (10 points) In a group of 100 students, the following facts are known:

- 50 take accounting,
- 40 take biology,
- 35 take chemistry,
- 12 take both accounting and biology,
- 10 take accounting and chemistry,
- 11 take chemistry and biology, and
- 5 take all three subjects.

How many take none of the three subjects?
7. (20 points) Let Z denote the set of all integers. Classify each of the following functions from Z to Z as one-to-one and onto, one-to-one and not onto, onto and not one-to-one, neither onto nor one-to-one. Prove your answers.
(a) Let $f(n)= \begin{cases}2 n & \text { if } n \geq 0 \\ -2 n-1 & \text { if } n<0\end{cases}$
(b) Let $f(n)= \begin{cases}n-1 & \text { if } n \geq 1 \\ n+1 & \text { if } n \leq 0\end{cases}$
(c) $f(n)=-n$
(d) $f(n)=|n|$

