Throughout we use both the notations $\binom{n}{r}$ and C_{r}^{n} for the number $\frac{n!}{(n-r)!r!}$.

1. A falling number is an integer whose decimal representation has the property that each digit except the units digit is larger than the one to its right. For example 96521 is a falling number but 89642 is not. How many n-digit falling numbers are there, for $n=1,2,3,4,5,6,7,8$, and 9 ? What is the total number of falling numbers of all sizes?
Solution: Each set of k digits can be arranged in exactly one way to form a falling number. Thus, there are just as many k-digit falling numbers as there are k-member subsets of $\{0,1,2,3,4,5,6,7,8,9\}$. That is, $\binom{10}{1}\binom{10}{2},\binom{10}{3},\binom{10}{4}$, $\binom{10}{5}, \ldots,\binom{10}{10}$. Adding all these numbers together gives $2^{10}-1=1023$, since we don't count numbers with zero digits.
2. Cyprian writes down the middle number in each of the $\binom{9}{5}=126$ five-element subsets of $S=\{1,2,3,4,5,6,7,8,9\}$. Then he adds all these numbers together. What sum does he get?
Solution: He gets $3 \cdot\binom{6}{2}+4 \cdot\binom{3}{2} \cdot\binom{5}{2}+5 \cdot\binom{4}{2} \cdot\binom{4}{2}+6 \cdot\binom{5}{2} \cdot\binom{3}{2}+7$. $\binom{6}{2} \cdot\binom{2}{2}=45+120+180+180+105=630$. Alternatively, there is a $1-1$ correspondence between the five-element subsets with middle value k and those with middle value $10-k$, so the average value of the middle number is 5 . Since there are $\binom{9}{5}=126$ five-element subsets, the sum Cyprian gets is $5 \cdot 126=$ 630. An example of the $1-1$ correspondence is given below: $\{2,3,6,7,8\} \Leftrightarrow$ $\{2,3,4,7,8\}=\{10-8,10-7,10-6,10-3,10-2\}$.
3. Counting sums of subset members.
(a) How many number can be expressed as a sum of two or more distinct elements of the set $\{1,-3,9,-27,81,-243\}$?
Solution: An equivalent question is How many numbers have base -3 representations that have at most six digits all of which are 1's and 0's. The answer to the second question is 7 more than the answer to the first one however, because of the requirement that we must add two or more of the powers of -3 . There are $2^{6}=64$ such six-digit numbers, so the answer to our question is $64-7=57$.
(b) How many numbers can be expressed as a sum of two or more distinct members of the set $\{1,2,3,4,5,6,7,8,9\}$?
Solution: The sums are not distinct. However the numbers we can get are consecutive integers. The smallest is $1+2=3$ and the largest is $1+2+3+4+5+6+7+8+9=45$, so there are $45-2=43$ such numbers.
(c) How many numbers can be expressed as a sum of four distinct members of the set $\{17,21,25,29,33,37,41\}$?
Solution: Each member of $\{17,21,25,29,33,37,41\}$ is one more than a multiple of four. Therefore, any sum of four of them is a multiple of 4. The smallest such number is $17+21+25+29=92$ and the largest is $29+33+37+41=140$ and all the multiples of 4 between them are obtainable. There are $\frac{140-92}{4}+1=\frac{48}{4}+1=13$ such numbers.
Alternatively, we transform the problem into a simpler one. Because $17=4 \cdot 4+1,21=4 \cdot 5+1, \ldots, 41=4 \cdot 10+1$, it makes sense to set up a correspondence between the set of sums R and the set of numbers generated by $\{4,5,6,7,8,9,10\}$ OR between R and those numbers generated by $\{-3,-2,-1,0,1,2,3\}$. The set R in this case is just $\{-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6\}$, which has 13 members.
(d) How many numbers can be expressed as a sum of two or more distinct members of the set $\{17,21,25,29,33,37,41\}$?
Solution: We must look at cases. Solution to be supplied later.
4. How many of the first 242 positive integers are expressible as a sum of three or fewer members of the set $\left\{3^{0}, 3^{1}, 3^{2}, 3^{3}, 3^{4}\right\}$ if we are allowed to use the same power more than once. For example, $5=3+1+1$ can be represented, but 8 cannot. Hint: think about the ternary representations.

Solution: The number of powers of 3 used is just the sum of the ternary digits. We are looking for the number of integers whose ternary representations have a sum of digits of 3 or less. We consider three types, those with sum of digits 1,2 and 3. There are just 5 with sum of digits 1: $10000,1000,100,10,1$. There are $\binom{5}{2}+\binom{5}{1}=10+5=15$ numbers with sum of digits 2 . There are two types, those with two 1's and those with one 2 . There are $\binom{5}{3}+P_{2}^{5}=10+20=30$ of the third type for a total of $5+15+30=50$ numbers altogether.
5. How many integers can be expressed as a sum of two or more different members of the set $\{0,1,2,4,8,16,32\}$?

Solution: The 0 in the set means that we should count the individual elements among the sums. Every number from 1 and 63 has a unique representation (its binary representation) as a sum of powers of 2 . The powers of two themselves can be represented as a sum because of the 0 in the set. Thus the answer is 63 .
6. John has 2 pennies, 3 nickels, 2 dimes, 3 quarters, and 8 dollars. For how many different amounts can John make an exact purchase (with no change required)?

Solution: We'll count achievable amounts less than $\$ 1$, and multiply by 9 , then add in the 9 values $9.00,9.01,9.02,9.05,9.06,9.07,9.10,9.11,9.12$. They are $\{0,1,2,5,6,7,10,11,12, \ldots\}$, exactly three of every five consecutive values. So, counting 0 , there are $\frac{3}{5}(100)=60$ such values. Hence there are $9 \times 60-1=$ 539 , since we don't count the value 0 . Now adding in the nine uncounted values, we get $539+9=548$.

