Throughout we use both the notations $\binom{n}{r}$ and C_{r}^{n} for the number $\frac{n!}{(n-r)!r n}$.

1. A falling number is an integer whose decimal representation has the property that each digit except the units digit is larger than the one to its right. For example 96521 is a falling number but 89642 is not. How many n-digit falling numbers are there, for $n=1,2,3,4,5,6,7,8$, and 9 ? What is the total number of falling numbers of all sizes?
2. Cyprian writes down the middle number in each of the $\binom{9}{5}=126$ five-element subsets of $S=\{1,2,3,4,5,6,7,8,9\}$. Then he adds all these numbers together. What sum does he get?
3. Counting sums of subset members.
(a) How many number can be expressed as a sum of two or more distinct elements of the set $\{1,-3,9,-27,81,-243\}$?
(b) How many numbers can be expressed as a sum of two or more distinct members of the set $\{1,2,3,4,5,6,7,8,9\}$?
(c) How many numbers can be expressed as a sum of four distinct members of the set $\{17,21,25,29,33,37,41\}$?
(d) How many numbers can be expressed as a sum of two or more distinct members of the set $\{17,21,25,29,33,37,41\}$?
4. How many of the first 242 positive integers are expressible as a sum of three or fewer members of the set $\left\{3^{0}, 3^{1}, 3^{2}, 3^{3}, 3^{4}\right\}$ if we are allowed to use the same power more than once. For example, $5=3+1+1$ can be represented, but 8 cannot. Hint: think about the ternary representations.
5. How many integers can be expressed as a sum of two or more different members of the set $\{0,1,2,4,8,16,32\}$?
6. John has 2 pennies, 3 nickels, 2 dimes, 3 quarters, and 8 dollars. For how many different amounts can John make an exact purchase (with no change required)?

November 14, 2005
2:37 P.M.

