Throughout we use both the notations $\binom{n}{r}$ and C_r^n for the number $\frac{n!}{(n-r)!r!}$.

- 1. A *falling* number is an integer whose decimal representation has the property that each digit except the units digit is larger than the one to its right. For example 96521 is a falling number but 89642 is not. How many *n*-digit falling numbers are there, for n = 1, 2, 3, 4, 5, 6, 7, 8, and 9? What is the total number of falling numbers of all sizes?
- 2. Cyprian writes down the middle number in each of the $\binom{9}{5} = 126$ five-element subsets of $S = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$. Then he adds all these numbers together. What sum does he get?
- 3. Counting sums of subset members.
 - (a) How many number can be expressed as a sum of two or more distinct elements of the set $\{1, -3, 9, -27, 81, -243\}$?
 - (b) How many numbers can be expressed as a sum of two or more distinct members of the set {1, 2, 3, 4, 5, 6, 7, 8, 9}?
 - (c) How many numbers can be expressed as a sum of four distinct members of the set {17, 21, 25, 29, 33, 37, 41}?
 - (d) How many numbers can be expressed as a sum of two or more distinct members of the set {17, 21, 25, 29, 33, 37, 41}?
- 4. How many of the first 242 positive integers are expressible as a sum of three or fewer members of the set $\{3^0, 3^1, 3^2, 3^3, 3^4\}$ if we are allowed to use the same power more than once. For example, 5 = 3 + 1 + 1 can be represented, but 8 cannot. Hint: think about the ternary representations.
- 5. How many integers can be expressed as a sum of two or more different members of the set {0, 1, 2, 4, 8, 16, 32}?
- 6. John has 2 pennies, 3 nickels, 2 dimes, 3 quarters, and 8 dollars. For how many different amounts can John make an exact purchase (with no change required)?

November 14, 2005 2:37 P.M.