Let $U=\{0,1,2,3,4,5,6,7,8,9\}$ be the universal set, $A=\{0,1,2,3,4,5\}$, and $B=\{4,5,6,7\}$. Find each of the following numbers.

1. $|A \times B|$

Solution: $|A \times B|=|A| \times|B|=6 \times 4=24$.
2. $|\bar{A} \times \bar{B}|$

Solution: $|\bar{A} \times \bar{B}|=|\bar{A}| \times|\bar{B}|=4 \times 6=24$.
3. $|A \times \bar{B}|$

Solution: $|A \times \bar{B}|=|A| \times|\bar{B}|=6 \times 6=36$.
4. $|\bar{A} \times B|$

Solution: $|\bar{A} \times B|=|\bar{A}| \times|B|=4 \times 4=16$.
5. $|A \times B|+|\bar{A} \times \bar{B}|+|A \times \bar{B}|+|\bar{A} \times B|$

Solution: $|A \times B|+|\bar{A} \times \bar{B}|+|A \times \bar{B}|+|\bar{A} \times B|=24+24+36+16=100$.
Another way to see this is to note that $U \times U$, which has 100 elements, can be decomposed (partitioned) into the four sets $A \times B, \bar{A} \times \bar{B}, A \times \bar{B}$ and $\bar{A} \times B$
6. $|(A \cap B) \times(A \cup B)|$

Solution: $|(A \cap B) \times(A \cup B)|=|(A \cap B)| \times|(A \cup B)|=2 \times 8=16$.
7. $|(A \cap B) \times \overline{(A \cup B)}|$

Solution: $|(A \cap B) \times \overline{(A \cup B)}|=2 \times 2=4$.
8. $\mid\{T: T \subseteq U,|T \cap A|=2$ and $|T \cap B|=2\} \mid$. In other words, how many subsets T of U have exactly two elements in common with A and exactly two elements in common with B. Hint: start this problem by listing a few of the sets with the desired properties, and then ask yourself 'how much freedom is there in choosing such sets?'
Solution: We'll look at three types of sets based on how T intersects $A \backslash$ $B, A \cap B$, and $B \backslash A$. Case 1. $|T \cap A \cap B|=2$, There are just four subsets of this type, $\{4,5\},\{4,5,8\},\{4,5,9\}$, and $\{4,5,8,9\}$. Next suppose $\mid T \cap(A \backslash B \mid=$ $\mid T \cap(B \backslash A|=| T \cap(A \cap B \mid=1$ There are 4 ways to choose the member of $A \backslash B, 2$ ways to choose the member of $A \cap B, 2$ ways to choose the member of $B \backslash A$ and 4 ways to attach a subset of $\{8,9\}$. Finally we could have $|T \cap(A \backslash B)|=2=|T \cap(B \backslash A)|$, in which case there are 6 ways to choose the two elements of A and 1 way to choose the 2 elements of B, and then 4 ways to finish building the set. The sum of these is $4+64+24=92$ ways to build T.

