1. Write $n=1492$ in the base $b=2 b=4$, and $b=8$. What is the relationship among these representations? In other words, find a way to convert between these bases without translating them to and from decimal.
Solution: First compute the base 8 representation of 1492 to get $1492=$ 2724_{8}. Then find the binary representation of each of the four digits $2,7,2$, and 4 . These are $010,111,010$, and 100 . Now you can string these representations together to get 010111010100_{2}. To get the base 4 representation of 10111010100_{2}, interpret each pair of binary digits as a base four digit, starting at the right. Thus $00=0 ; 01=1 ; 01=1 ; 11=3 ; 01=1$ and $1=1$. Thus 113110_{4} is the base four representation of 1492 .
2. Find the unknown digit x from the equation $2 x 3_{4}=1 x 10_{3}$.

Solution: Interpret the two numbers to get $2 x 3_{4}=2 \cdot 4^{2}+4 x+3$ and $1 x 10_{3}=1 \cdot 3^{3}+3^{2} x+3$. Then solve the resulting linear equation to find that $x=1$.
3. Construct the tables of addition and multiplication for the base $b=6$ and evaluate $215_{6}+304_{6}, \quad 203_{6} \times 405_{6}$.
Solution: $(215)_{6}+(304)_{6}=523_{6}$ and $(203)_{6} \times(405)_{6}=123423_{6}$
4. Find the base -5 representation of all the numbers from 1 to 25 .

Solution: They are 1, 2, 3, 4, 140, 141, 142, 143, 144, 130, 131, 132, 133, 134, 120, $121,122,123,124,110,111,112,113,114,100$.
5. Find the base 4 representation of $1 / 9$. Prove your answer.

Solution: $1 / 9=0 . \overline{013}_{4}$ by the process of repeated multiplication. To prove this, let $x=0 . \overline{013}_{4}$, and then note that $1000{ }_{4} x=13 . \overline{013}_{4}$ in which case we have $1000_{4} x-x=333_{4} x=13_{4}$, which is the same as the decimal equation $63 x=7$, so $x=1 / 9$.
6. Find the base -4 representation of $1 / 3$ and then show that your answer is correct.
Solution: $1 . \overline{32}_{-4}$. To see that this is correct, let $x=1 . \overline{32}_{-4}$. Then $100 x=$ $132 . \overline{32}$, and $100_{-4}-1_{-4}=114_{-4}$, so $113_{-4} x=132_{-4}$. Translating these into decimal notation, we have $15 x=1 \cdot(-4)^{2}+3 \cdot(-4)+2=5$, so $x=1 / 3$.
7. How many two-digit positive integers N have the property that the sum of N and the number obtained by reversing the order of the digits of N is a perfect square?

Solution: Let $N=10 x+y$. Then $10 x+y+10 y+x=11(x+y)$ must be a perfect square. Since $1 \leq x+y \leq 18$, it follows that $x+y=11$. There are eight such numbers: $29,38,47,56,65,74,83$, and 92 .
8. A check is written for x dollars and y cents, both x and y two-digit numbers. In error it is cashed for y dollars and x cents, the incorrect amount exceeding the correct amount by $\$ 17.82$. Find a possible value for x and y.
Solution: Note that $100 y+x-(100 x+y)=99(y-x)=1782$. It follows that $y-x=18$, so any pair of two-digit numbers that differ by 18 will work.
9. The rightmost digit of a six-digit number N is moved to the left end. The new number obtained is five times N. What is N ?

Solution: The number is 142857. Let $N=\underline{a b c d e f}$ and let $x=\underline{a b c d e}$. Then we have $5 N=5(\underline{a b c d e f})=\underline{f a b c d e}$. Note that we have adopted the convention of underlining the digits of an integer in decimal notation. For example $\underline{a b}=$ $10 a+b$. Note that $5(a b c d e f)=5(\underline{a b c d e 0}+f)=5(10 x+f)=f a b c d e=$ $100000 f+x$. This leads to $50 x-x=100000 f-5 f$ or $49 x=99995 f$. Factoring both sides gives $7^{2} x=5 \cdot 7 \cdot 2857 \cdot f$, which is equivalent to $7 x=5 \cdot 2857 \cdot f$, from which it follows that $f=7$. Therefore $x=14285$ and $N=142857$.

