1. Write $n=1492$ in the base $b=2 b=4$, and $b=8$. What is the relationship among these representations? In other words, find a way to convert between these bases without translating them to and from decimal.
2. Find the unknown digit x from the equation $2 x 3_{4}=1 x 10_{3}$.
3. Construct the tables of addition and multiplication for the base $b=6$ and evaluate $215_{6}+304_{6}, \quad 203_{6} \times 405_{6}$.
4. Find the base -5 representation of all the numbers from 1 to 25 .
5. Find the base 4 representation of $1 / 9$. Prove your answer.
6. Find the base -4 representation of $1 / 3$ and then show that your answer is correct.
7. How many two-digit positive integers N have the property that the sum of N and the number obtained by reversing the order of the digits of N is a perfect square?
8. A check is written for x dollars and y cents, both x and y two-digit numbers. In error it is cashed for y dollars and x cents, the incorrect amount exceeding the correct amount by $\$ 17.82$. Find a possible value for x and y.
9. The rightmost digit of a six-digit number N is moved to the left end. The new number obtained is five times N. What is N ?
