November 24, 2008
Name
The total number of points available is 137. Throughout this test, show your work.

1. (15 points) Consider the function $f(x)=\left(x^{2}-4 x+4\right) e^{2 x}$.
(a) Use the product rule to find $f^{\prime}(x)$.

Solution: $f^{\prime}(x)=(2 x-4) e^{2 x}+2\left(x^{2}-4 x+4\right) e^{2 x}$
(b) List the critical points of f.

Solution: Factor the expression above to get $\left(2 x^{2}-8 x+8+2 x-4\right) e^{2 x}=$ $2 e^{2 x}(x-2)(x-1)$, which has value 0 when $x=2, x=1$.
(c) Construct the sign chart for $f^{\prime}(x)$.

Solution: f^{\prime} is positive on $(-\infty, 1)$ and on $(2, \infty)$.
(d) Write in interval notation the interval(s) over which f is increasing.

Solution: f is increasing on $(-\infty, 1)$ and on $(2, \infty)$.
2. (15 points) Consider the function $f(x)=\ln \left[\left(2 x^{2}+3\right)(7 x-2)\left(x^{2}-4\right)\right]$.
(a) Recalling that $\ln (x)$ is defined precisely when $x>0$, find the domain of f.
Solution: Build the sign chart for the function $g(x)=\left(2 x^{2}+3\right)(7 x-$ 2) $\left(x^{2}-4\right)=\left(2 x^{2}+3\right)(7 x-2)(x-2)(x+2)$ to see that g is positive on $(-2,2 / 7)$ and $(2, \infty)$. So the domain of the function f is the union of these two sets.
(b) Let $g(x)=\left(2 x^{2}+3\right)(7 x-2)^{2}\left(x^{2}-4\right)^{3}$. Use logarithmic differentiation to find g^{\prime}. You need not simplify your answer.
Solution: Take logs of both sides to get $\ln g(x)=\ln \left(2 x^{2}+3\right)(7 x-2)^{2}\left(x^{2}-\right.$ $4)^{3}$. This simplifies to $\ln g(x)=\ln \left(2 x^{2}+3\right)+2 \ln (7 x-2)+3 \ln \left(x^{2}-4\right)$. Now taking the derivative of both sides yields

$$
\frac{g^{\prime}(x)}{g(x)}=\frac{4 x}{2 x^{2}+3}+\frac{2 \cdot 7}{7 x-2}+\frac{3 \cdot 2 x}{x^{2}-4}
$$

Finally, we can write

$$
g^{\prime}(x)=\left(2 x^{2}+3\right)(7 x-2)^{2}\left(x^{2}-4\right)^{3}\left(\frac{4 x}{2 x^{2}+3}+\frac{14}{7 x-2}+\frac{6 x}{x^{2}-4}\right) .
$$

3. (15 points) Consider the function $f(x)=\ln \left(x^{2}+4\right)$.
(a) Find the domain of f.

Solution: f is defined for all x because $x^{2}+4$ is positive for all x.
(b) Find both $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.

Solution: $f^{\prime}(x)=\frac{2 x}{x^{2}+4}$ and, by the quotient rule, $f^{\prime \prime}(x)=\frac{2\left(x^{2}+4\right)-2 x(2 x)}{\left(x^{2}+4\right)^{2}}$, which simplifies to

$$
f^{\prime \prime}(x)=\frac{-2 x^{2}+8}{\left(x^{2}+4\right)^{2}}
$$

So $f^{\prime \prime}(x)$ has two zeros, $x=2$ and $x=-2$.
(c) Build the sign chart for $f^{\prime \prime}(x)$.

Solution: The sign chart shows that $f^{\prime \prime}(x)$ is positive only between -2 and 2.
(d) Does f have an absolute maximum or and absolute minimum? Is so, which? ... and where?
Solution: f has an absolute minimum at $x=0 . f(0)=\ln 4$.
(e) Find an interval over which f is increasing. As usual, to get credit for this, you must show your work.
Solution: Since f^{\prime} is positive on $(0, \infty)$, it follows that f is increasing on that interval.
(f) Does f have any inflection points?

Solution: Yes, at both $(-2, \ln 8)$ and $(2, \ln 8)$.
(g) Use the information from part b. to find the intervals where f is concave upwards.
Solution: Since $f^{\prime \prime}$ is positive on $(-2,2), f$ is concave upwards on that interval.
(h) Sketch the graph of f.

Solution:

4. (20 points) According to Newton's Law of Cooling, the rate at which an object's temperature changes is proportional to the temperature of the medium into which it is emersed. If $F(t)$ denotes the temperature of a cup of instant coffee (initially $212^{\circ} \mathrm{F}$), then it can be proven that

$$
F(t)=T+A e^{-k t}
$$

where T is the air temperature, $68^{\circ} F, A$ and k are positive constants, and t
is expressed in minutes.
(a) What is the value of A ?

Solution: Since $F(t)=68+A e^{-k t}$, it follows that $F(0)=68+A \cdot 1=212$ so $A=144$.
(b) Suppose that after exactly 8 minutes, the temperature of the coffee is $136.6^{\circ} F$. What is the value of k ?
Solution: Solve $F(t)=136.6=68+144 e^{-k(8)}$ for k to get $k=0.09269$.
(c) Use the information in (a) and (b) to find the number of minutes before the coffee reaches the temperature of $80^{\circ} \mathrm{F}$.
Solution: Solve the equation $80=68+144 e^{-0.09269 t}$ for t to get first $e^{-0.09269 t}=12 / 144=0.83333$, and taking logs of both sides yields $t=$ 26.8 minutes.
5. (10 points) Find an equation for the line tangent to the graph of $y=\ln x^{2}$ at the point $(1,0)$.
Solution: The derivative of the function is $y^{\prime}=2 / x$ so the slope of the line at $x=1$ is $2 / 1=2$ and the line is $y-0=2(x-1)$. That is $y=2 x-2$.
6. (10 points) Find an equation for the line tangent to the graph of $y=e^{5 x-2}$ at the point $(2 / 5,1)$.
Solution: $y^{\prime}=5\left(e^{5 x-2}\right.$ so $m=5 e^{5 \cdot \frac{2}{5}-2}=5$. Thus the line is $y-1=5(x-2 / 5)$. and in slope-intercept form $y=5 x-1$.
7. (12 points) A skull from an archeological dig has one-twelfth the amount of Carbon-14 it had when the specimen was alive.
(a) Recall that the half-life of Carbon-14 is 5770 years. Find the decay constant k.
Solution: We must solve the equation $Q(5770)=Q_{0} / 2$ for k, where $Q(t)=Q_{0} e^{-k t}$. The equation leads to $e^{-5770 k}=1 / 2$ which means that $k \approx 1.201 \times 10^{-4}=0.00012$.
(b) What is the age of the specimen? Round off your answer to the nearest multiple of one hundred years.
Solution: To solve the equation $Q_{0} e^{-k t}=Q_{0} / 12$, divide both sides by Q_{0} to get $e^{-k t}=1 / 12$. This happens for $t=20685$ years, which rounds to 20700 .
8. (10 points) How long does it take an investment of $\$ P$ at an annual rate of 8% to triple in value if compounding
(a) takes place quarterly? Round your answer to the nearest tenth of a year.

Solution: We need to solve the equation $3 P=P\left(1+\frac{0.08}{4}\right)^{4 t}=P(1.02)^{4 t}$ for t. Using logs, we get $t=\frac{\ln 3}{4 \ln 1.02} \approx 13.87 \approx 13.9$ years.
(b) takes place continuously? Round your answer to the nearest tenth of a year. As usual, now work shown, no credit!
Solution: We need to solve the equation $3000=1000 e^{0.08 t}$ for t. Using logs, we get $t=\frac{\ln 3}{0.08} \approx 13.73 \approx 13.7$ years.
9. (30 points) Spreading of a rumor. Three hundred college students attend a lecture of the Dean at which she hints that the college will become coed. The rumor spreads according to the logistic curve

$$
Q(t)=\frac{3000}{1+B e^{-k t}},
$$

where t is measured in hours.
(a) Compute the parameter B.

Solution: Note that $Q(0)=300=\frac{3000}{1+B e^{-k 0}}$, so $1+B=10$, and $B=9$.
(b) How many students attend the college? Hint: the question is not 'how many attended the lecture?'
Solution: Take the limit as $t \rightarrow \infty$ since eventually everyone knows the rumor. $\lim _{t \rightarrow \infty} \frac{3000}{1+9 e^{-k t}}=3000$.
(c) Two hours after the speech, 600 students had heard the rumor. How many students had heard the rumor after four hours?
Solution: Solve $Q(2)=600=\frac{3000}{1+9 e^{-2 k}}$ for k. We get $9 e^{-2 k}=4$ and $k=\frac{\ln 4-\ln 9}{-2} \approx 0.40546$. Therefore $Q(4)=\frac{3000}{1+9 e^{-4 k}}=1080$.
(d) How fast is the rumor spreading after four hours?

Solution: We need $Q^{\prime}(t)$. So write $Q(t)=3000\left(1+9 e^{-k t}\right)^{-1}$ and use the chain rule to get $Q^{\prime}(t)=\frac{3000 \cdot 9 k e^{-k t}}{\left(1+9 e^{-k t}\right)^{2}}$. Using a calculator, we find that $Q^{\prime}(4)=\frac{27000 \mathrm{ke} e^{-4 k}}{\left(1+9 e^{-4 k}\right)^{2}} \approx \frac{2162.48}{7.716} \approx 280$ students per hour.
(e) After how many hours will 2000 students have heard the rumor?

Solution: We need to solve the equation $Q(t)=2000=\frac{3000}{1+9 e^{-k t}}$ for t. We have $1+9 e^{-k t}=3 / 2$, and it follows that $e^{-k t}=1 / 18$. We can solve this for t to get $t=\frac{\ln 1-\ln 18}{-k}=\frac{\ln 18}{k} \approx 7.128$ hours.

