November 21, 2006
Name
The total number of points available is 139. Throughout this test, show your work.

1. (10 points) Find all vertical and horizontal asymptotes, if any, for $r(x)=$ $\frac{6 x^{2}+3 x}{x^{2}+5 x-6}$.
Solution: Factor both numerator and denominator to get $r(x)=\frac{3 x(2 x+1)}{(x-1)(x+6)}$, so there are vertical asymptotes at $x=1$ and $x=-6$, and a horizontal asymptote at $y=6$.
2. (12 points) Consider the function $f(x)=4 x^{3}+15 x^{2}-18 x, \quad-4 \leq x \leq 4$. Find the locations of the absolute maximum of $f(x)$ and the absolute minimum of $f(x)$ and the value of f at these points.

Solution: Since $f^{\prime}(x)=12 x^{2}+30 x-18=6\left(2 x^{2}+5 x-3\right)=6(2 x-1)(x+3)$ we have critical points at $x=0.5$ and $x=-3$. The other two candidates for extrema are the endpoints, -4 and 4 . Checking functional values, we have $f(-4)=56, f(0.5)=-19 / 4, f(-3)=81$ and $f(4)=424$. So f has an absolute maximum of 424 at $x=4$ and an absolute minimum of $-19 / 4$ at $x=0.5$.
3. (12 points) Sketch the graph of a function f that satisfies the following conditions.
(a) The domain of f is $(-\infty, 1) \cup(1, \infty)$
(b) $x=1$ is a vertical asymptote.
(c) $\lim _{x \rightarrow \infty} f(x)=2, \lim _{x \rightarrow-\infty} f(x)=0$.
(d) $f(-1)=1, f(0)=0$
(e) $f^{\prime}(x)>0$ on $(-\infty,-1) \cup(0,1)$
(f) $f^{\prime}(x)<0$ on $(-1,0) \cup(1, \infty)$
(g) $f^{\prime \prime}(x)>0$ on $(-\infty,-2) \cup\left(-\frac{1}{2}, 1\right) \cup(1, \infty)$
(h) $f^{\prime \prime}(x)<0$ on $\left(-2,-\frac{1}{2}\right)$

4. (20 points) For each function listed below, find all the critical points. Recall that the derivative of the exponential function $e^{f(x)}$ is given by $\frac{d}{d x} e^{f(x)}=$ $f^{\prime}(x) e^{f(x)}$. It is also useful to know that the equation $e^{x}=0$ has no solutions. Tell whether each critical point gives rise to a local maximum, a local minimum, or neither.
(a) $f(x)=\left(x^{2}-4\right)^{3}$

Solution: $f^{\prime}(x)=3\left(x^{2}-4\right)^{2} \cdot 2 x$, so the critical points are $x= \pm 2, x=0$. Looking at the sign chart of f^{\prime}, we see that f^{\prime} does not change signs at ± 2, so neither of these is an extremum. But f^{\prime} changes from negative to positive at zero, so f must have a minimum there.
(b) $g(x)=(x+2)^{2 / 3}$

Solution: $g^{\prime}(x)=\frac{2}{3}(x+2)^{-1 / 3}$, which means that g has a singular point at $x=-2$. Since f^{\prime} is negative to the left of -1 and positive to the right, we know f has a minimum at $x=-2$.
(c) $h(x)=e^{x^{3}-3 x}$

Solution: $h^{\prime}(x)=\left(3 x^{2}-3\right)\left(e^{x^{3}-3 x}\right)$, so we solve $3 x^{2}-3=0$ to get two critical points, $x= \pm 1$. Looking at the sign chart of h^{\prime}, we see that h^{\prime} is negative between -1 and 1, and positive elsewhere. So h has a max. at -1 and a min. at 1 .
(d) $k(x)=\frac{x^{2}-1}{2 x+3}$

Solution: By the quotient rule, $k^{\prime}(x)=\frac{2 x(2 x+3)-2\left(x^{2}-1\right)}{(2 x+3)^{2}}$, which we set equal to zero and solve. Using the quadratic formula, we get $\frac{-3 \pm \sqrt{9-4}}{2}=$ $-\frac{3}{2} \pm \frac{\sqrt{5}}{2}$. Looking at the sign chart of k^{\prime}, we see that k^{\prime} is negative between the two zeros, and positive elsewhere. So k has a max. at the first one and a min. at the second.
(e) $f(x)=\ln \left(x^{2}+4\right)$

Solution: $f^{\prime}(x)=\frac{2 x}{x^{2}+4}$, so there is only one critical point, $x=0$. The sign chart of f^{\prime} tells us that f has a minimum at 0 .
5. (25 points) Consider the function $f(x)=(2 x-5)^{2}\left(x^{2}-3\right)$.
(a) Find the places where $f(x)$ changes signs.

Solution: The function could change signs at any of $x=5 / 2, x=$ $\sqrt{3}, x=-\sqrt{3}$, but the sign chart shows that f does not change signs at $5 / 2$.

(b) Find the places where $f(x)$ has a horizontal tangent line.

Solution: Use the product rule to differentiate f, getting $f^{\prime}(x)=2(2 x-$ 5) $\left(4 x^{2}-5 x-6\right)=2(2 x-5)(x-2)(4 x+3)$. The zeros of f^{\prime} are $3 / 2,2$, and $-3 / 4$. There are no singular points.
(c) Find the places where $f(x)$ changes concavity.

Solution: Use the product rule to find that $f^{\prime \prime}(x)=2 \cdot 2\left(4 x^{2}-5 x-\right.$ $6)+2(2 x-5)(8 x-5)=48 x^{2}-120 x+26$, which has two zeros, $\alpha=$ $\frac{60-\sqrt{60^{2}-4 \cdot 24 \cdot 13}}{48} \approx 0.2396$ and $\beta=\frac{60+\sqrt{60^{2}-4 \cdot 24 \cdot 13}}{48} \approx 2.260$, by the quadratic formula.
(d) For the points in part (b), tell whether $f(x)$ has (a) a relative maximum, (b) a relative minimum, or (c) neither a relative max or min.

Solution: The sign chart for $f^{\prime}(x)$ is shown below. From it you can deduce that f is falling to the left of -2 , rising between -2 and $3 / 4$, falling again from $3 / 4$ to $5 / 2$, and then increasing to the right of $5 / 2$. It follows that f has relative mins at $-3 / 4$ and $5 / 2$ and a relative max at 2 .

6. (10 points) Find a rational function $r(x)$ that has the following properties.
(a) It has exactly two zeros, $x=-4$ and $x=2$.
(b) It has two vertical asymptotes, $x=0$ and $x=-1$.
(c) It has $y=2$ as a horizontal asymptote.

Solution: One function that works is

$$
r(x)=\frac{2(x+4)(x-2)}{x(x+1)} .
$$

7. (15 points) Find the point on the line $3 x+2 y=6$ that is closest to the point $(-4,-4)$.
Solution: The points on the line all satisfy $(x, y)=(x, 3-3 x / 2)$, so the distance function we want to minimize is $D(x)=\sqrt{(x+4)^{2}+(3-3 x / 2+4)^{2}}=$ $\sqrt{(x+4)^{2}+(7-3 x / 2)^{2}}$. We can alternatively minimize D^{2}. Let $H(x)=$ $D^{2}(x)=(x+4)^{2}+(7-3 x / 2)^{2}$. Then $H^{\prime}(x)=2(x+4)+2(7-3 x / 2) \cdot(-3 / 2)$. Setting $h^{\prime}(x)$ equal to zero to find the critical point(s), $2 x+8-3(7-3 x / 2)=$ $2 x+8-21+9 x / 2=13 x / 2-13=0$ exactly when $x=2$. Therefore the point on the line closest to $(-4,-4)$ is $(2,0)$ and the minimum distance is $\sqrt{52}$.
8. (15 points) A baseball team plays in he stadium that holds 60000 spectators. With the ticket price at 12 dollars the average attendance has been 25000 . When the price dropped to 10 dollars, the average attendance rose to 40000 .
(a) Find the demand function $p(x)$, where x is the number of the spectators and $p(x)$ is measured in dollars, assuming it is linear. In other words, if the relationship between the price and number of tickets sold is linear, find the price when x tickets are sold.
Solution: We need to find the linear demand function, given that $(25000,12)$ and $(40000,10)$ are on the graph. To simplify, we measure the attendance in thousands, so the two points are $(25,12)$ and $(40,10)$. Thus the slope is $m=\frac{12-10}{25-40}=-\frac{2}{15}$. Using the point-slope form of a line, we have $p(x)-10=-2 / 15(x-40)$. Simplifying yields $p(x)=(-2 x+230) / 15$.
(b) How should the ticket price be set to maximize revenue?

Solution: Now the revenue function $R(x)$ is the product of number of tickets sold and the price per ticket. Thus $R(x)=x p(x)=x(-2 x+$ $230) / 15 . R^{\prime}(x)=(-4 x+230) / 15$, which has a zero at $x=230 / 4=57.50$. What this says is that the optimum attendance is $57.50 \cdot 1000=57500$ and that corresponds to a ticket price of $23 / 3$ dollars.
9. (20 points) According to Newton's Law of Cooling, the rate at which an object's temperature changes is proportional to the temperature of the medium into which it is emersed. If $F(t)$ denotes the temperature of a cup of instant coffee (initially $212^{\circ} F$), then it can be proven that

$$
F(t)=T+A e^{-k t}
$$

where T is the air temperature, $72^{\circ} F, A$ and k are constants, and t is expressed in minutes.
(a) What is the value of A ?

Solution: Note that $F(0)=72+A \cdot 1=212$ so $A=140$.
(b) Suppose that after exactly 10 minutes, the temperature of the coffee is $186.6^{\circ} F$. What is the value of k ?
Solution: Solve $F(t)=186.6=72+140 e^{-k(10)}$ for k to get $k=0.020019$.
(c) Use the information in (a) and (b) to find the number of minutes before the coffee reaches the temperature of $80^{\circ} F$.
Solution: Solve the equation $80=72+140 e^{-0.020019 t}$ for t to get first $e^{-0.020019 t}=8 / 140=0.05714$, and taking logs of both sides yields $t=$ 142.97 minutes.

