August 2, 2005

Name

The total number of points available is 160. Throughout this test, show your work.

1. (10 points) Consider the function $f(x)=5 x^{2}-8 x+3, \quad 0 \leq x \leq 7$. Find the locations of the absolute maximum of $f(x)$ and the absolute minimum of $f(x)$ and the value of f at these points.

Solution: Since $f^{\prime}(x)=10-8$ we have one critical point at $x=0.8$. The other two candidates for extrema are the endpoints, 0 and 7. Checking functional values, we have $f(0)=3, f(0.8)=-0.2$, and $f(7)=192$. So f has an absolute maximum of 192 at $x=7$ and an absolute minimum of -0.2 at $x=0.8$.
2. (20 points) Find a rational function $r(x)$ that has all the following properties:
(a) It has exactly two zeros, $x=-2$ and $x=3$.
(b) It has two vertical asymptotes, $x=0$ and $x=-3$.
(c) It has $y=2$ as a horizontal asymptote.
(a) Sketch the graph of your $r(x)$.

Solution:

Sadly, you cannot see the little curly part in the upper left corner.
(b) Find a symbolic representation of r.

Solution: There are a few ways to do this. The easiest is to make the numerator $2(x+2)(x-3)$ and the denominator $x(x+3)$. The graph is shown above.
3. (50 points) Consider the function $f(x)=(2 x-1)^{2}(x+3)^{2}$.
(a) Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.

Solution: By the product rule, $f^{\prime}(x)=2(2 x-1)\left(2(x+3)^{2}+2(x+3)(2 x-\right.$ $1)^{2}=2(2 x-1)(x+3)(2(x+3)+2 x-1)=2(2 x-1)(x+3)(4 x+5)$. and $f^{\prime \prime}(x)=2[2(x+3)(4 x+5)+(2 x-1)(4 x+5)+4(2 x-1)(x+3)]=$ $2\left[24 x^{2}+60 x+13\right]$.
(b) Find the three critical points of f.

Solution: The zeros of f^{\prime} are $-3,-1.25$, and 0.5 . There are no singular points.
(c) Apply the Test Interval Technique to find the sign chart for f^{\prime} and use the information in the sign chart to classify the critical points of f. In other words, tell whether each one is the location of (a) a relative maximum, (b) a relative minimum, or (c) neither a relative max or min.

Solution: From the work above, we see that the intervals are $(-\infty,-3)$, $(-3,-1.25),(-1.25,0.5),(0.5, \infty)$. The sign of f^{\prime} is negative over the first and third of these and positive over the other two.
(d) List the intervals over which f is increasing.

Solution: Reading from the sign chart for f^{\prime}, we see that f is increasing over $(-3,-1.25)$ and $(0.5, \infty)$.
(e) Discuss the concavity to f and find all the inflection points on the graph of f.
Solution: Use the quadratic formula to solve $24 x^{2}+60 x+13=0$ to get the two roots $x \approx-2.26$ and $x \approx-0.24$. Since $f^{\prime \prime}$ is a parabola that opens upward, we can see that $f^{\prime \prime}(x)<0$ between the two roots and positive outside the two. So f is concave upwards on $(\infty,-2.26)$ and on $(-0.24, \infty)$ and concave downward on the interval between them. There are points of inflection at roughly $(-0.24, f(-0.24))$ and $(-2.26, f(-2.26))$.
4. (20 points) Consider the function $g(x)=e^{-2 x}$. A rectangle R with sides parallel to the x - and y-axes has its lower left vertex at the origin and its upper right vertex on the graph of g as shown below.

(a) Note that the area of R depends only on the choice of x. Find the area $R(x)$. For example, $R(2)=2 \cdot e^{-4}$.
Solution: The area function is $R(x)=x e^{-2 x}, 0 \leq x$. Thus, $R^{\prime}(x)=$ $e^{-2 x}-2 x e^{-2 x}$, by the product rule. The only critical point is $x=1 / 2$.
(b) Find the value of x that maximizes the area of the rectangle. What is it about the sign chart of $R^{\prime}(x)$ that convinces you the you have found a relative maximum.

Solution: The sign chart for $R^{\prime}(x)$ makes it clear that a maximum is realized at $x=1 / 2$. The sign chart for $R^{\prime}(x)$ is positive to the left of $1 / 2$ and negative to the right of $1 / 2$.
5. (20 points) Consider the function $f(x)=\ln \left(x^{2}+1\right)$.
(a) Find $f^{\prime}(x)$.

Solution: $f^{\prime}(x)=\frac{2 x}{x^{2}+1}$.
(b) Find $f^{\prime \prime}(x)$.

Solution: $f^{\prime \prime}(x)=\frac{2\left(x^{2}+1\right)-2 x(2 x)}{\left(x^{2}+1\right)^{2}}$.
(c) Find the sign chart for $f^{\prime \prime}(x)$.

Solution: $f^{\prime \prime}(x)<0$ on $(-\infty,-1)$ and on $(1, \infty)$ and positive on $(-1,1)$, as shown on the sign chart for $f^{\prime \prime}$:

(d) Find the intervals over which f is concave upwards.

Solution: From (c) it follows that f is concave upwards on $(-1,1)$.
6. (20 points) A rancher wants to fence in an area of 10 square miles in a rectangular field and then divide it in half with a fence down the middle parallel to one side. What is the shortest length of fence that the rancher can use?
Solution: About 16 miles of fencing is needed. See the diagram below. Note that the total amount of fencing needed, based on the labeling of the figure is $3 y+4 x$ and the area fenced in is $A=10=2 x y$. Solve the last relation for y to get $y=5 / x$. Now the amount of fencing f can be written in terms of x as follows: $f(x)=3(5 / x)+4 x, 0<x$. Find the critical points of f by first noting that $f^{\prime}(x)=15(-1) x^{-2}+4$. Then solve $f^{\prime}(x)=0$ to get $x=\sqrt{15} / 2$. The sign chart for f^{\prime} shows that f has a minimum at $\sqrt{15} / 2$. The rancher needs $f(\sqrt{15} / 2)=4 \sqrt{15} \approx 15.49$ miles of fencing.

7. (20 points) A baseball team plays in he stadium that holds 60000 spectators. With the ticket price at 12 dollars the average attendance has been 25000 . When the price dropped to 10 dollars, the average attendance rose to 40000 .
(a) Find the demand function $p(x)$, where x is the number of the spectators and $p(x)$ is measured in dollars, assuming it is linear. In other words, if the relationship between the price and number of tickets sold is linear, find the price when x tickets are sold.
Solution: We need to find the linear demand function, given that $(25000,12)$ and $(40000,10)$ are on the graph. To simplify, we measure the attendance in thousands, so the two points are $(25,12)$ and $(40,10)$. Thus the slope is $m=\frac{12-10}{25-40}=-\frac{2}{15}$. Using the point-slope form of a line, we have $p(x)-10=-2 / 15(x-40)$. Simplifying yields $p(x)=(-2 x+230) / 15$.
(b) How should the ticket price be set to maximize revenue?

Solution: Now the revenue function $R(x)$ is the product of number of tickets sold and the price per ticket. Thus $R(x)=x p(x)=x(-2 x+$ $230) / 15 . R^{\prime}(x)=(-4 x+230) / 15$, which has a zero at $x=230 / 4=57.50$. What this says is that the optimum attendance is $57.50 \cdot 1000=57500$ and that corresponds to a ticket price of $23 / 3$ dollars.

