August 2, 2005

Name

The total number of points available is 160. Throughout this test, show your work.

1. (10 points) Consider the function $f(x)=5 x^{2}-8 x+3, \quad 0 \leq x \leq 7$. Find the locations of the absolute maximum of $f(x)$ and the absolute minimum of $f(x)$ and the value of f at these points.
2. (20 points) Find a rational function $r(x)$ that has all the following properties:
(a) It has exactly two zeros, $x=-2$ and $x=3$.
(b) It has two vertical asymptotes, $x=0$ and $x=-3$.
(c) It has $y=2$ as a horizontal asymptote.
(a) Sketch the graph of your $r(x)$.

(b) Find a symbolic representation of r.
3. (50 points) Consider the function $f(x)=(2 x-1)^{2}(x+3)^{2}$.
(a) Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
(b) Find the three critical points of f.
(c) Apply the Test Interval Technique to find the sign chart for f^{\prime} and use the information in the sign chart to classify the critical points of f. In other words, tell whether each one is the location of (a) a relative maximum, (b) a relative minimum, or (c) neither a relative max or min.
(d) List the intervals over which f is increasing.
(e) Discuss the concavity to f and find all the inflection points on the graph of f.
4. (20 points) Consider the function $g(x)=e^{-2 x}$. A rectangle R with sides parallel to the x - and y-axes has its lower left vertex at the origin and its upper right vertex on the graph of g as shown below.

(a) Note that the area of R depends only on the choice of x. Find the area $R(x)$. For example, $R(2)=2 \cdot e^{-4}$.
(b) Find the value of x that maximizes the area of the rectangle. What is it about the sign chart of $R^{\prime}(x)$ that convinces you the you have found a relative maximum.
5. (20 points) Consider the function $f(x)=\ln \left(x^{2}+1\right)$.
(a) Find $f^{\prime}(x)$.
(b) Find $f^{\prime \prime}(x)$.
(c) Find the sign chart for $f^{\prime \prime}(x)$.
(d) Find the intervals over which f is concave upwards.
6. (20 points) A rancher wants to fence in an area of 10 square miles in a rectangular field and then divide it in half with a fence down the middle parallel to one side. What is the shortest length of fence that the rancher can use?
7. (20 points) A baseball team plays in he stadium that holds 60000 spectators. With the ticket price at 12 dollars the average attendance has been 25000 . When the price dropped to 10 dollars, the average attendance rose to 40000 .
(a) Find the demand function $p(x)$, where x is the number of the spectators and $p(x)$ is measured in dollars, assuming it is linear. In other words, if the relationship between the price and number of tickets sold is linear, find the price when x tickets are sold.
(b) How should the ticket price be set to maximize revenue?
