October 29, 2004 Name
The total number of points available is 135. Throughout this test, show your work.

1. (25 points) Let $g(x)=x^{3}-6 x^{2}-15 x+32$.
(a) Find the critical points of g.

Solution: Compute $g^{\prime}(x)$ and find its zeros. $g^{\prime}(x)=3 x^{2}-12 x-15=$ $3\left(x^{2}-4 x-5\right)=3(x+1)(x-5)$, so the stationary points of g are $x=-1$ and $x=5$. There are no singular points.
(b) Find the intervals over which g is increasing.

Solution: The sign chart for g^{\prime} is given below.

By Big Theorem A, it follows that g is increasing on both $(-\infty,-1)$ and $(5, \infty)$.
(c) Find the intervals over which g is concave upward.

Solution: The sign chart for $g^{\prime \prime}(x)=6 x-12$ is given below.

Therefore, by Big Theorem B, g is concave upwards on the interval $(2, \infty)$.
(d) Find the locations of local maxima and minima for g.

Solution: There is one local maximum, and it occurs at $x=-1$ (note that $\left.g^{\prime \prime}(-1)<0\right)$. There is one local minimum at $x=5$ (note that $\left.g^{\prime \prime}(5)>0\right)$. Finally, $g(-1)=40$ and $g(5)=-68$.
(e) What is the maximum value of g over the interval $[0,10]$?

Solution: Compare the values of g at the critical points and the endpoints. $g(0)=32, g(5)=-68, g(10)=282$ so the maximum value of g in the interval is $g(10)=282$.
2. (20 points) Find the critical points of each function.
(a) $f(x)=(x-4)^{2}(2 x-3)^{3}$

Solution: Use the product rule to get $f^{\prime}(x)=2(x-4)(2 x-3)^{3}+3(2 x-$ $\left.3)^{2}\right) \cdot 2(x-4)^{2}=(x-4)(2 x-3)^{2}[2(2 x-3)+6(x-4)]=(x-4)(2 x-$
$3)^{2}[4 x-6+6 x-24]=(x-4)(2 x-3)^{2}[10 x-30]$, so the critical points are $x=4, x=3 / 2$, and $x=3$.
(b) $g(x)=\left(x^{2}-4\right)^{2 / 3}$

Solution: $\left[f^{\prime}(x)=2\left(x^{2}-4\right)^{-1 / 3} \div 3\right] \cdot 2 x$ so there are critical points of both types, singular and stationary. The stationary critical point is $x=0$ and the two singular points are the x values that make f^{\prime} undefined, namely $x=2$ and $x=-2$.
3. (20 points) Given below is a sign chart for the derivative $f^{\prime}(x)$ of a function.

(a) For each of the stationary points A, B, C and D tell whether $f(x)$ has a relative maximum, relative minimum, or neither at the point.
Solution: Since f is increasing to the left of A and decreasing just to the right of A, it must have a local max at A. Since f^{\prime} has the same sign on both sides of B and D, it has neither a max nor a min at these points. It has a relative minimum at C.
(b) Suppose $f(x)$ is a polynomial function. Sketch a function on the coordinate system below that could have a derivative whose sigh chart is the one given.

Solution: Look for this answer in class after the test.
4. (15 points) Consider the cubic polynomial $p(x)$ whose graph is given. Note the x-intercepts are $-4,-2$ and 1 and the y-intercept is -1 . Find numbers a, b, c, and d such that $a x^{3}+b x^{2}+c x+d$ has the given graph.

Solution: Since the x-intercepts are $-4,-2$, and 1 , the linear factors must be $x+4, x+2$, and $x-1$, so the polynomial has the form $p(x)=a(x+4)(x+$ $2)(x-1)$. Since $p(0)=-1=a(4)(2)(-1)=-8 a$, it follows that $a=1 / 8$. Therefore $p(x)=(x+4)(x+2)(x-1) / 8=x^{3} / 8+5 x^{2} / 8+x / 4-1$. So a, b, c, and d are $1 / 8,5 / 8,1 / 4$, and -1 respectively.
5. (20 points) The altitude of a rocket in feet t seconds into the flight is given by $s=f(t)=-t^{3}+96 t^{2}+195 t+5$.
(a) What is the maximum altitude attained by the rocket? At what time into the flight does this occur?
Solution: The maximum altitude is attained at some point where the velocity is zero. The velocity function $v(t)$ is given by $v(t)=-3 t^{2}+$ $192 t+195$ whose zeros we find by factoring: $t=-1$ and $t=65$. Now the maximum height is $f(65)=143655$ feet.
(b) What is the maximum velocity attained by the rocket? At what time into the flight does this occur?
Solution: To find the maximum velocity, we need to find the critical points of the velocity function. So compute $v^{\prime}(t)=-6 t+192$, which has only one zero, $t=32$. At time $t=32, v(t)=-3 \cdot 32^{2}+192 \cdot 32+195=$ 3267.
6. (15 points) Four identical $x \times x$ square corners are cut from a 14×20 inch rectangular piece of metal, and the sides are folded upward to build a box.
(a) What is the volume of the box that results when the corners cut are 1×1.
Solution: The volume is the product length \times width \times height $=12 \times$ $16 \times 1=216$.
(b) Let $V(x)$ denote the volume of the box when the $x \times x$ corners are removed. Find $V(2)$ and $V(3)$.
Solution: Note that $V(x)=(14-2 x)(20-2 x)(x)$ and $V(2)=10 \cdot 16 \cdot 2=$ 320 and $V(3)=8 \cdot 14 \cdot 3=336$.
(c) What is the implied domain of V ?

Solution: The domain of V is $[0,7]$.
(d) Find $V^{\prime}(x)$.

Solution: $V^{\prime}(x)=\frac{d}{d x}\left(14 x-2 x^{2}\right)(20-2 x)=(14-4 x)(20-2 x)-(14 x-$ $\left.2 x^{2}\right)(-2)=12 x^{2}-136 x+280$.
(e) Find the critical points of $V(x)$.

Solution: Factor out 4 from $V^{\prime}(x)$ and use the quadratic formula to find the zeros of $3 x^{2}-34 x+70$. We get

$$
x=\frac{34 \pm \sqrt{34^{2}-4 \cdot 3 \cdot 70}}{6}=\frac{34 \pm \sqrt{316}}{6}=2.7039
$$

when we take the negative sign. The other place where $V^{\prime}(x)=0$ is outside the interval $[0,7]$. Its about 8.629 .
(f) What value of x makes the value of V maximum? Estimate within .01 the maximum value of V.
Solution: $V(2.7039) \approx 339.01255 \approx 339.01$.
7. (20 points) Amber Airlines runs chartered flights to Costa Rica. They expect 200 passengers and they charge each passenger $\$ 300$. However if more than 200 persons sign up for the flight, they agree to charge $\$ 0.75$ less per ticket for each extra person.
(a) Find the revenue function $R(x)$ in terms of the number of new passengers x. In other words, let $x+200$ represent the number of passengers, where $x>0$
Solution: Let x represent the number of passengers beyond 200 that Amber Airlines enlists. Then $R(x)=(200+x)(300-0.75 x)$.
(b) How many passengers result in the maximum revenue?

Solution: To maximize $R(x)$, find the critical points and the endpoints of the domain. The domain is $[0, \infty)$, and, by the product rule, the derivative is $R^{\prime}(x)=1(300-.75)-0.75(200+x)=300-.75 x-150-.75 x=$ $150-1.5 x$. So $x=100$ is the only critical point. Note that $R^{\prime \prime}(x)=-1.5$, so $R^{\prime \prime}(100)=-1.5<0$, and this means that $x=100$ is the location of a relative maximum. Since $R(0)=200 \cdot 300=60000$ is the only endpoint, and since R is decreasing to the right of $x=100$ (why?, $R^{\prime}(x)$ is negative for $x>100$), it follows that R has an absolute maximum at $x=100$.
(c) What is that maximum revenue?

Solution: The maximum revenue is $R(100)=300 \cdot 225=67500$.

