April 11, 2003

Name
The first 6 problems count 5 points each. Problems 6 through 9 count as marked. In the multiple choice section, circle the correct choice (or choices). The total number of points available is 120 .

Each of the next few items are true-false. To get full credit you must give a valid reason for your answer. Circle either True or False, and give your reason in the space provided. Generally, 2 points for the right t / f value and 3 points for the right reason.

1. True or false. If $f^{\prime \prime}(x)<0$ on the interval (a, c) and $f^{\prime \prime}(x)>0$ on the interval (c, b), then the point $(c, f(c))$ is a point of inflection of f.
Solution: True. This is basically the definition of inflection point.
2. True or false. If $f^{\prime}(c)=0$, then f has a relative maximum or a relative minimum at $x=c$.
Solution: False. The function can have neither a max nor a min at a stationary point. Look at $f(x)=x^{3}$ and $x=0$.
3. True or false. If f has a relative maximum at $x=c$, then $f^{\prime}(c)=0$.

Solution: False. All we can tell is that c is a critical point. It might be a singular point.
4. True or false. If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$, then f has a relative maximum at $x=c$.
Solution: True. This is just the second derivative test.
5. True or false. If $h(x)=\sqrt{x^{2}-4}$, then $h^{\prime}(x)=\frac{1}{2}\left(x^{2}-4\right)^{-1 / 2}$.

Solution: False. Look up the chain rule.
6. True or false. The function $g(x)=(x-1)^{2 / 3}$ has a singular point at $x=1$.

Solution: True. Since $g^{\prime}(x)=2(x-1)^{-1 / 3} / 3=2 / 3(x-1)^{-1 / 3}$, you can see that $g^{\prime}(1)$ is not a number. Therefore $x=1$ is a singular point.

On all the following questions, show your work.
7. (20 points) Sketch the graph of a function $g(x)$ satisfying the properties shown in the table below.

x	$g(x)$	$g^{\prime}(x)$
-2	1	0
0	0	-1
2	0	1

Use the coordinate system given.

Solution: One possible graph is

8. (20 points) Let $g(x)=(2 x-4)^{2}(x+3)^{2}$.
(a) Use the test interval technique (not a graphing calculator) to find the intervals over which g is increasing.
Solution: First, note that $g^{\prime}(x)=2(2 x-4)(x+3)[2 x+6+2 x-$ $4]=2(2 x-4)(x+3)(4 x+2)$, so the critical points are $x=-3, x=$ $-1 / 2$, and $x=2$. Using the test interval technique on the intervals $(-\infty,-3),(-3,-1 / 2),(-1 / 2,2)$ and $(2, \infty)$ with test points $-4,-1,0$, and 3 , we can see that

test point	$2 \mathrm{x}-4$	$\mathrm{x}+3$	$4 \mathrm{x}+2$	sign of g^{\prime}
-4	-	-	-	-
-1	-	+	-	+
0	-	+	+	-
3	+	+	+	+

We conclude that $g(x)$ is increasing on the two intervals $(-3,-1 / 2)$ and $(2, \infty)$.
(b) Find and classify each critical point as a location of a. a relative maximum, b. a relative minimum, or c. neither a relative max nor a relative min.
Solution: We can use the second derivative test on the three critical points of g. Since $g^{\prime \prime}(x)=2 \cdot 2(x+3)(4 x+2)+2(2 x-4) \cdot \frac{d}{d x}((x+3)(4 x+2))$, by the product rule, it follows that $g^{\prime \prime}(x)=2 \cdot 2(x+3)(4 x+2)+2(2 x-$ $4)(4 x+2+4(x+3))$. Therefore $g^{\prime \prime}(-3)=200, g^{\prime \prime}(-1 / 2)=-100$, and $g^{\prime \prime}(2)=200$. The second derivative test now confirms what we felt, that is, there is a relative maximum at $-1 / 2$ and relative minimums at both -3 and 2 .
9. (15 points) Consider the rational function

$$
f(x)=\frac{\left(x^{2}-4\right)(2 x+1)}{\left(3 x^{2}-3\right)(x-2)}
$$

(a) Find the horizontal asymptote(s).

Solution: The coefficient of x^{3} in the numerator is 2 while that in the denominator is 3 , so $y=2 / 3$ is the horizontal asymptote.
(b) Find the vertical asymptotes.

Solution: To find the vertical asymptotes, you must first reduce the fraction to lowest terms, which mean cancelling out the common factors,
in this case, just the $x-2$'s. This results in a denominator that has value 0 only at $x= \pm 1$, so these are the two vertical asymptotes.
(c) Compute $\lim _{x \rightarrow \infty} f(x)$.

Solution: The limit in question is the same as the horizontal asymptote, $2 / 3$.
10. (15 points) Four congruent $x \times x$ squares from the corners of a cardboard rectangle that measures 16×12. The sides are then folded upward to form a topless box.
(a) Find the volume V as a function of x. What is the logical domain?

Solution: $V(x)=(16-2 x)(12-2 x) x$.
(b) Compute $V(0), V(1), V(2)$, and $V(3)$.

Solution: $\quad V(0)=0, V(1)=14 \cdot 10 \cdot 1=140, V(2) 12 \cdot 8 \cdot 2=192$, and $V(3)=10 \cdot 6 \cdot 3=180$.
(c) Find $V^{\prime}(x)$.

Solution:

$$
\begin{aligned}
V^{\prime}(x) & =-2(12-2 x) x+(16-2 x)\left(\frac{d}{d x}(12-2 x) x\right) \\
& =-2(12-2 x) x+(16-2 x)[(-2) x+1(12-2 x)] \\
& =-24 x+4 x^{2}+(16-2 x)(-4 x+12) \\
& =12 x^{2}-112 x+192
\end{aligned}
$$

(d) Use the results from the question above to determine the critical points of V.
Solution: Use the quadratic formula to find that the critical point is $c=\frac{14-2 \sqrt{13}}{3} \approx 2.263$. The other root of the quadratic is outside the domain of V.
(e) Find the absolute maximum value of V and the value of x where it occurs. Solution: Simply evaluate V at the two endpoints and the critical point to see that the maximum value of V is $V(c) \approx 194.07$.
11. (20 points) Compute each of the following derivatives.
(a) $\frac{d}{d x} \sqrt{x^{3}+1}$

Solution: $\frac{d}{d x} \sqrt{x^{3}+1}=\frac{3 x^{2}}{2 \sqrt{x^{3}+1}}$.
(b) $\frac{d}{d x}\left(2 x^{2}+1\right)^{10}$

Solution: $\frac{d}{d x}\left(2 x^{2}+1\right)^{10}=40 x\left(2 x^{2}+1\right)^{9}$.
(c) $\frac{d}{d x}\left(\frac{2 x+1}{x^{2}+1}\right)$

Solution: $\frac{d}{d x}\left(\frac{2 x+1}{x^{2}+1}\right)=-\frac{2\left(x^{2}+x-1\right)}{\left(x^{2}+1\right)^{2}}$.
(d) $\frac{d}{d x}\left(2 x^{2}+1\right)(3 x-4)$

Solution: $\frac{d}{d x}\left(2 x^{2}+1\right)(3 x-4)=4 x(3 x-4)+3\left(2 x^{2}+1\right)=18 x^{2}-16 x+3$.

