April 11, 2003 Name

The first 6 problems count 5 points each. Problems 6 through 9 count as marked. In the multiple choice section, circle the correct choice (or choices). The total number of points available is 120.

Each of the next few items are true-false. To get full credit you must give a valid reason for your answer. Circle either True or False, and give your reason in the space provided. Generally, 2 points for the right t/f value and 3 points for the right reason.

1. True or false. If f''(x) < 0 on the interval (a, c) and f''(x) > 0 on the interval (c, b), then the point (c, f(c)) is a point of inflection of f.

Solution: True. This is basically the definition of inflection point.

2. True or false. If f'(c) = 0, then f has a relative maximum or a relative minimum at x = c.

Solution: False. The function can have neither a max nor a min at a stationary point. Look at $f(x) = x^3$ and x = 0.

3. True or false. If f has a relative maximum at x = c, then f'(c) = 0.

Solution: False. All we can tell is that c is a critical point. It might be a singular point.

4. True or false. If f'(c) = 0 and f''(c) < 0, then f has a relative maximum at x = c.

Solution: True. This is just the second derivative test.

- 5. True or false. If $h(x) = \sqrt{x^2 4}$, then $h'(x) = \frac{1}{2}(x^2 4)^{-1/2}$. Solution: False. Look up the chain rule.
- 6. True or false. The function $g(x) = (x 1)^{2/3}$ has a singular point at x = 1. Solution: True. Since $g'(x) = 2(x - 1)^{-1/3}/3 = 2/3(x - 1)^{-1/3}$, you can see that g'(1) is not a number. Therefore x = 1 is a singular point.

On all the following questions, **show your work.**

7. (20 points) Sketch the graph of a function $g(x)$ satisfying the properties shown										
							$\frac{x}{-2}$	$\begin{array}{c c} g(x) \\ \hline 1 \end{array}$	g'(x)	
in the table below									0	
							$\begin{array}{c} 0\\ 2 \end{array}$	$\begin{array}{c} 0\\ 0 \end{array}$	-1 1	
Use the	coordi	nate sy	ystem g	given.			-	0	1	
						Î.				
				•	•				•	
	•	•		•	• ·				•	•
					. .	ļ .				
-				+						>
					_				_	_
	·	·			•	- ·				•
				•	•				•	
	•			•	•	+ ·			•	•
						ļ .				

Solution: One possible graph is

- 8. (20 points) Let $g(x) = (2x 4)^2(x + 3)^2$.
 - (a) Use the test interval technique (not a graphing calculator) to find the intervals over which g is increasing.

Solution: First, note that g'(x) = 2(2x - 4)(x + 3)[2x + 6 + 2x - 4] = 2(2x - 4)(x + 3)(4x + 2), so the critical points are x = -3, x = -1/2, and x = 2. Using the test interval technique on the intervals $(-\infty, -3), (-3, -1/2), (-1/2, 2)$ and $(2, \infty)$ with test points -4, -1, 0, and 3, we can see that

test point	2x-4	x+3	4x+2	sign of g'
-4	—	—		—
-1	_	+	—	+
0	_	+	+	—
3	+	+	+	+

We conclude that g(x) is increasing on the two intervals (-3, -1/2) and $(2, \infty)$.

(b) Find and classify each critical point as a location of a. a relative maximum, b. a relative minimum, or c. neither a relative max nor a relative min.

Solution: We can use the second derivative test on the three critical points of g. Since $g''(x) = 2 \cdot 2(x+3)(4x+2)+2(2x-4) \cdot \frac{d}{dx}((x+3)(4x+2))$, by the product rule, it follows that $g''(x) = 2 \cdot 2(x+3)(4x+2)+2(2x-4)(4x+2+4(x+3))$. Therefore g''(-3) = 200, g''(-1/2) = -100, and g''(2) = 200. The second derivative test now confirms what we felt, that is, there is a relative maximum at -1/2 and relative minimums at both -3 and 2.

9. (15 points) Consider the rational function

$$f(x) = \frac{(x^2 - 4)(2x + 1)}{(3x^2 - 3)(x - 2)}.$$

(a) Find the horizontal asymptote(s).

Solution: The coefficient of x^3 in the numerator is 2 while that in the denominator is 3, so y = 2/3 is the horizontal asymptote.

(b) Find the vertical asymptotes.

Solution: To find the vertical asymptotes, you must first reduce the fraction to lowest terms, which mean cancelling out the common factors,

in this case, just the x-2's. This results in a denominator that has value 0 only at $x = \pm 1$, so these are the two vertical asymptotes.

- (c) Compute $\lim_{x\to\infty} f(x)$. Solution: The limit in question is the same as the horizontal asymptote, 2/3.
- 10. (15 points) Four congruent $x \times x$ squares from the corners of a cardboard rectangle that measures 16×12 . The sides are then folded upward to form a topless box.
 - (a) Find the volume V as a function of x. What is the logical domain? Solution: V(x) = (16 - 2x)(12 - 2x)x.
 - (b) Compute V(0), V(1), V(2), and V(3). **Solution:** $V(0) = 0, V(1) = 14 \cdot 10 \cdot 1 = 140, V(2)12 \cdot 8 \cdot 2 = 192$, and $V(3) = 10 \cdot 6 \cdot 3 = 180$.
 - (c) Find V'(x). Solution:

$$V'(x) = -2(12 - 2x)x + (16 - 2x)(\frac{d}{dx}(12 - 2x)x)$$

= -2(12 - 2x)x + (16 - 2x)[(-2)x + 1(12 - 2x)]
= -24x + 4x^{2} + (16 - 2x)(-4x + 12)
= 12x^{2} - 112x + 192

(d) Use the results from the question above to determine the critical points of V.

Solution: Use the quadratic formula to find that the critical point is $c = \frac{14-2\sqrt{13}}{3} \approx 2.263$. The other root of the quadratic is outside the domain of V.

(e) Find the absolute maximum value of V and the value of x where it occurs. Solution: Simply evaluate V at the two endpoints and the critical point to see that the maximum value of V is $V(c) \approx 194.07$.

- 11. (20 points) Compute each of the following derivatives.
 - (a) $\frac{d}{dx}\sqrt{x^3+1}$ **Solution:** $\frac{d}{dx}\sqrt{x^3+1} = \frac{3x^2}{2\sqrt{x^3+1}}$. (b) $\frac{d}{dx}(2x^2+1)^{10}$ **Solution:** $\frac{d}{dx}(2x^2+1)^{10} = 40x(2x^2+1)^9$. (c) $\frac{d}{dx}\left(\frac{2x+1}{x^2+1}\right)$ **Solution:** $\frac{d}{dx}\left(\frac{2x+1}{x^2+1}\right) = -\frac{2(x^2+x-1)}{(x^2+1)^2}$. (d) $\frac{d}{dx}(2x^2+1)(3x-4)$
 - (d) $\frac{d}{dx}(2x^2+1)(3x-4)$ Solution: $\frac{d}{dx}(2x^2+1)(3x-4) = 4x(3x-4) + 3(2x^2+1) = 18x^2 - 16x + 3.$