April 11, 2003 Name

The first 6 problems count 5 points each. Problems 6 through 9 count as marked. In the multiple choice section, circle the correct choice (or choices). The total number of points available is 120.

Each of the next few items are true-false. To get full credit you must give a valid reason for your answer. Circle either True or False, and give your reason in the space provided. Generally, 2 points for the right t/f value and 3 points for the right reason.

- 1. True or false. If f''(x) < 0 on the interval (a, c) and f''(x) > 0 on the interval (c, b), then the point (c, f(c)) is a point of inflection of f.
- 2. True or false. If f'(c) = 0, then f has a relative maximum or a relative minimum at x = c.
- 3. True or false. If f has a relative maximum at x = c, then f'(c) = 0.
- 4. True or false. If f'(c) = 0 and f''(c) < 0, then f has a relative maximum at x = c.
- 5. True or false. If $h(x) = \sqrt{x^2 4}$, then $h'(x) = \frac{1}{2}(x^2 4)^{-1/2}$.
- 6. True or false. The function $g(x) = (x-1)^{2/3}$ has a singular point at x = 1.

On all the following questions, $\mathbf{show}\ \mathbf{your}\ \mathbf{work.}$

7. (20 points) Sketch the graph of a function $g(x)$ satisfying the properties shown									
						$\frac{x}{2}$	g(x)	g'(x)	
in the table below.						$-2 \\ 0$	$\begin{array}{c c}1\\0\end{array}$	0 -1	
						$\frac{0}{2}$	0	1	
Use the coordinate system given.									
	•	•			+				
	·	•	•	•	Ť			•	
		•			+	•		•	
			•		+	•		•	
						ł	l	1	⊢>
		•	•	•	+	•		•	
					1				
	•	•	•	•	+	•		•	
					ļ				

- 8. (20 points) Let $g(x) = (2x 4)^2(x + 3)^2$.
 - (a) Use the test interval technique (not a graphing calculator) to find the intervals over which g is increasing.
 - (b) Find and classify each critical point as a location of a. a relative maximum, b. a relative minimum, or c. neither a relative max nor a relative min.
- 9. (15 points) Consider the rational function

$$f(x) = \frac{(x^2 - 4)(2x + 1)}{(3x^2 - 3)(x - 2)}.$$

- (a) Find the horizontal asymptote(s).
- (b) Find the vertical asymptotes.
- (c) Compute $\lim_{x\to\infty} f(x)$.
- 10. (15 points) Four congruent $x \times x$ squares from the corners of a cardboard rectangle that measures 16×12 . The sides are then folded upward to form a topless box.
 - (a) Find the volume V as a function of x. What is the logical domain?
 - (b) Compute V(0), V(1), V(2), and V(3).
 - (c) Find V'(x).
 - (d) Use the results from the question above to determine the critical points of V.
 - (e) Find the absolute maximum value of V and the value of x where it occurs.

- 11. (20 points) Compute each of the following derivatives.
 - (a) $\frac{d}{dx}\sqrt{x^3+1}$

(b)
$$\frac{d}{dx}(2x^2+1)^{10}$$

(c)
$$\frac{d}{dx}\left(\frac{2x+1}{x^2+1}\right)$$

(d)
$$\frac{d}{dx}(2x^2+1)(3x-4)$$