April 11, 2003
 Name

The first 6 problems count 5 points each. Problems 6 through 9 count as marked. In the multiple choice section, circle the correct choice (or choices). The total number of points available is 120 .

Each of the next few items are true-false. To get full credit you must give a valid reason for your answer. Circle either True or False, and give your reason in the space provided. Generally, 2 points for the right t / f value and 3 points for the right reason.

1. True or false. If $f^{\prime \prime}(x)<0$ on the interval (a, c) and $f^{\prime \prime}(x)>0$ on the interval (c, b), then the point $(c, f(c))$ is a point of inflection of f.
2. True or false. If $f^{\prime}(c)=0$, then f has a relative maximum or a relative minimum at $x=c$.
3. True or false. If f has a relative maximum at $x=c$, then $f^{\prime}(c)=0$.
4. True or false. If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$, then f has a relative maximum at $x=c$.
5. True or false. If $h(x)=\sqrt{x^{2}-4}$, then $h^{\prime}(x)=\frac{1}{2}\left(x^{2}-4\right)^{-1 / 2}$.
6. True or false. The function $g(x)=(x-1)^{2 / 3}$ has a singular point at $x=1$.

On all the following questions, show your work.
7. (20 points) Sketch the graph of a function $g(x)$ satisfying the properties shown in the table below.

x	$g(x)$	$g^{\prime}(x)$
-2	1	0
0	0	-1
2	0	1

Use the coordinate system given.

8. (20 points) Let $g(x)=(2 x-4)^{2}(x+3)^{2}$.
(a) Use the test interval technique (not a graphing calculator) to find the intervals over which g is increasing.
(b) Find and classify each critical point as a location of a. a relative maximum, b. a relative minimum, or c. neither a relative max nor a relative min.
9. (15 points) Consider the rational function

$$
f(x)=\frac{\left(x^{2}-4\right)(2 x+1)}{\left(3 x^{2}-3\right)(x-2)}
$$

(a) Find the horizontal asymptote(s).
(b) Find the vertical asymptotes.
(c) Compute $\lim _{x \rightarrow \infty} f(x)$.
10. (15 points) Four congruent $x \times x$ squares from the corners of a cardboard rectangle that measures 16×12. The sides are then folded upward to form a topless box.
(a) Find the volume V as a function of x. What is the logical domain?
(b) Compute $V(0), V(1), V(2)$, and $V(3)$.
(c) Find $V^{\prime}(x)$.
(d) Use the results from the question above to determine the critical points of V.
(e) Find the absolute maximum value of V and the value of x where it occurs.
11. (20 points) Compute each of the following derivatives.
(a) $\frac{d}{d x} \sqrt{x^{3}+1}$
(b) $\frac{d}{d x}\left(2 x^{2}+1\right)^{10}$
(c) $\frac{d}{d x}\left(\frac{2 x+1}{x^{2}+1}\right)$
(d) $\frac{d}{d x}\left(2 x^{2}+1\right)(3 x-4)$

