November 15, 2001 Your name \qquad
The multiple choice count 5 points each and the true-false problems count 3 points each. In the multiple choice section, circle the correct choice (or choices). You must show your work on the other problems. The total number of points available is 122 .

1. True-false questions. Circle the appropriate word, true or false.
(a) True or false. Every continuous function f on an interval $[a, b]$ must have an absolute maximum somewhere in the interval. Ie, there exists a point $c \in[a, b]$ such that $f(c) \geq f(x)$ for all $x \in[a, b]$.
Solution: True. This is just what the BIG theorem says.
(b) True or false. The graph of a function cannot touch or intersect a horizontal asymptote to the graph of f.
Solution: False. There is nothing in the definition of horizontal asymptote that implies this.
(c) True or false. If $f^{\prime}(c)=0$, then f has a relative maximum or a relative minimum at $x=c$.
Solution: False. The function can have neither a max nor a min at a stationary point. Look at $f(x)=x^{3}$ and 0 .
(d) True or false. If f has a relative maximum or a relative minimum at $x=c$, then $f^{\prime}(c)=0$.
Solution: False. All we can tell is that c is a critical point. It might be a singular point.
(e) True or false. If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$, then f has a relative maximum at $x=c$.
Solution: True. This is just the second derivative test.
2. A stone is thrown straight upward from the roof of an 80 -foot high building. The height in feet of the stone at any time t (in seconds) is given by $h(t)=$ $-16 t^{2}+64 t+80$.
(a) How many seconds elapse before the stone hits the ground?
(A) 2 seconds
(B) 3 seconds
(C) 4 seconds
(D) 5 seconds
(E) 6 seconds

Solution: D. Solve the equation $h(t)=0$ to get $-16\left(t^{2}-4 t-5\right)=0$ and $t=-1, t=5$. Only $t=5$ makes any sense.
(b) At what time does the stone reach its maximum height?
(A) 1 second
(B) $3 / 2$ seconds
(C) 2 seconds
(D) $5 / 2$ seconds
(E) 3 seconds

Solution: C. Differentiate h and set h^{\prime} equal to zero to get $-32 t+64=0$, so $t=2$ seconds.
3. Which of the following is a horizontal asymptote of $r(x)$? Circle all those that apply.

$$
r(x)=\frac{(x+4)\left(x^{2}-1\right)\left(3 x^{2}-4\right)}{\left(x^{2}+x-12\right)(x-1)^{4}}
$$

(A) $x=1$
(B) $x=3$
(C) $y=0$
(D) $y=1$
(E) $y=3$

Solution: C. Note that the degree of the numerator is 5 while the degree of the denominator is 6 . Thus $y=0$ is the horizontal asymptote.
4. Referring again to the function $r(x)$ in the previous problem, which of the following is a vertical asymptote. Again circle all that apply.
(A) $y=0$
(B) $x=-4$
(C) $x=-1$
(D) $x=1$
(E) $x=3$

Solution: D and E. First, factor both numerator and denominator and cancel the common factors. When this is done, you see that the factor $x+4$ disappears from the denominator, leaving just $x-1$ and $x-3$.

On all the following questions, show your work.
5. (10 points) Sketch the graph of a function f with domain $[-4,-2) \cup(-2,4]$ on the coordinate axes provided that has all the following properties:
(a) $f(-4)=f(-1)=0$ and $f(0)=-1$.
(b) f has a stationary point (ie, $f^{\prime}=0$) at $x=1 / 2$.
(c) f has a singular point (ie, f^{\prime} is undefined) at $x=3$.
(d) f has a local minimum at $1 / 2$.
(e) f has a vertical asymptote at $x=-2$.

Solution: Of course there are many solutions. One solution is given below.

6. (40 points) Let $g(x)=(2 x-3)^{3}(x+1)^{2}$.
(a) Find $g^{\prime}(x)$ and the critical points of g. Express g^{\prime} in factored form.

Solution: Use the product theorem to get $g^{\prime}(x)=$

$$
\begin{aligned}
3(2 x-3)^{2} \cdot 2(x+1)^{2}+2(x+1)(2 x-3)^{3} & = \\
(x+1)(2 x-3)^{2}[6(x+1)+2(2 x-2)] & = \\
(x+1)(2 x-3)(6 x+6+4 x-6) & = \\
(x+1)(2 x-3)^{2}(10 x) &
\end{aligned}
$$

which has three zeros, $x=-1, x=3 / 2$, and $x=0$.
(b) Find $g^{\prime \prime}(x)$, and express it in factored form. Use the second derivative test and other methods to classify the points found in part a as relative minimums, relative maximums, or neither.
Solution: There are several ways to find $g^{\prime \prime}(x)$, one of which is to rewrite $g^{\prime}(x)$ as $g^{\prime}(x)=10\left(x^{2}+x\right)(2 x-3)^{2}$ and to use the product rule. This gives $g^{\prime \prime}(x)=$

$$
\begin{aligned}
10\left[(2 x+1)(2 x-3)^{2}+\left(x^{2}+x\right) \cdot 2(2 x-3) \cdot 2\right] & = \\
10(2 x-3)\left[(2 x+1)(2 x-3)+4 x^{2}+4 x\right] & = \\
10(2 x-3)\left[4 x^{2}-4 x-3+4 x^{2}+4 x\right] & = \\
10(2 x-3)\left(8 x^{2}-3\right) & =
\end{aligned}
$$

which has three zeros, $x=3 / 2$ and $x= \pm \sqrt{\frac{3}{8}}$.
(c) Use the test interval technique to determine the intervals over which g is increasing.
Solution: We are solving the inequality $g^{\prime}(x)>0$. So our line is divided into four intervals by the critical points of g. The intervals are $(-\infty,-1)$, $(-1,0),(0,3 / 2)$, and $(3 / 2, \infty)$. Checking the value of g^{\prime} at test points in these four intervals, we find that $g^{\prime}(x)$ is positive on the first, third and fourth intervals. Thus g is increasing on $(-\infty,-1)$ and $(0, \infty)$ since the third and fourth intervals can be merged.
(d) Use the test interval technique to determine the intervals over which g is concave upwards
Solution: We are solving the inequality $g^{\prime \prime}(x)>0$. So our line is divided into four intervals by the critical points of g^{\prime}, ie by the zeros of $g^{\prime \prime}$. The intervals are $\left(-\infty, \sqrt{\frac{3}{8}}\right),\left(-\sqrt{\frac{3}{8}}, \sqrt{\frac{3}{8}}\right),\left(\sqrt{\frac{3}{8}}, 3 / 2\right)$ and $(3 / 2, \infty)$. Checking the value of $g^{\prime \prime}$ at test points in these four intervals, we find that $g^{\prime \prime}(x)$ is positive on the second and fourth intervals. Thus g is concave upwards on $\left(-\sqrt{\frac{3}{8}} \sqrt{\frac{3}{8}}\right)$ and $(3 / 2, \infty)$.
7. (20 points) A topless box is constructed from a rectangular piece of cardboard that measures 16 inches by 12 inches. An x by x square is cut from each of the four corners, and the sides are then folded upwards to build the box.
(a) Express the volume V as a function of x.

Solution: $V(x)=x(16-2 x)(12-2 x)$
(b) Use the physical constraints to find the domain of V.

Solution: $0 \leq x \leq 6$.
(c) Find the derivative of V and use it to find the critical points of V.

Solution: Rewrite $V(x)$ as $V(x)=\left(16 x-2 x^{2}\right)(12-2 x)$ and use the product rule to get $V^{\prime}(x)=$

$$
\begin{array}{r}
\left.(16-4 x)(12-2 x)+16 x-2 x^{2}\right)(-2)= \\
8 x^{2}-80 x+12 \cdot 16+4 x^{2}-32 x= \\
12 x^{2}-112 x+12 \cdot 16= \\
4\left(3 x^{2}-28 x+48\right) .
\end{array}
$$

(d) Compute the value of V at all the points in the domain, including endpoints, where V could have an absolute extrema.
Solution: Use the quadratic formula to get

$$
x=\frac{28 \pm \sqrt{28^{2}-4 \cdot 3 \cdot 48}}{6}=\frac{28 \pm \sqrt{208}}{6} \approx 7.07, \text { and } 2.2629,
$$

only the later of which is in the domain of V.
(e) What is the volume of the largest box that can be so constructed?

Solution: $V(2.2629) \approx 194.067$ is the absolute maximum. The absolute minimum $(=0)$ occurs at the endpoints, 0 and 6 .
8. (16 points) Optimal Charter Flight Fare. If exactly 160 people sign up for a charter flight, the agency charges $\$ 300$. However, if more than 160 sign up, the agency reduces the fare by $\$ 0.80$ for each additional person.
(a) Let x denote the number of passengers beyond 160 . Construct the revenue function $R(x)$.
Solution: $R(x)=(160+x)(300-0.8 x)$.
(b) Find all the critical points of your revenue function.

Solution: $R^{\prime}(x)=(300-0.8 x)-0.8(160+x)=-1.6 x+172$, which is zero when $x=107.5$, which is the location of a relative maximum of R.
(c) What number of passengers results in the maximum revenue?

Solution: The optimal number of passengers to take is $160+107.5=$ 267.5 (maybe 267 adults and a baby).
(d) What is the maximum revenue?

Solution: The optimal revenue is $R(107.5)=(160+107.5)(300-0.8(107.5))=$ 57, 245 .

