June 21, 2001
Name
The total number of points possible is 118. SHOW YOUR WORK

1. (10 points) . Find the relative maxima and relative minima, if any, of $g(x)=$ $x^{2}+16 / x^{2}+4$. Demonstrate that you understand either the first derivative test or the second derivative test that distinguishes relative maxima from relative minima.
Solution: Note that $g^{\prime}(x)=2 x-32 x^{-3}$ and $g^{\prime \prime}(x)=2+96 x^{-4}$. The stationary points are ± 2. There are no singular points, but I will not take away points if you claim that 0 is a singular point (g is not defined at 0 so it does not qualify to be a singular point. Apply either the first derivative test or the second to find that g has minimums at both 2 and -2 . Note that $g^{\prime \prime}(2)=g^{\prime \prime}(-2)>0$.
2. (20 points) Suppose you have differentiated a function $f(x)$ and found that

$$
f^{\prime}(x)=\frac{(x-4)(x+3)^{2}}{(x-2)(3 x)(x+5)}
$$

(a) Find the intervals over which f is increasing.

Solution: The critical numbers are the zeros of the numerator and the denominator, namely, $x=4,-3,2,0$, and 5 . Use the test interval technique to find that f is increasing over the intervals $(-\infty,-5),(0,2),(4, \infty)$.
(b) Find an equation for the horizontal asymptote of the function f^{\prime}, if there is one.
Solution: There is one horizontal asymptote, which is the ration of the coefficients of the cubic terms, $y=1 / 3$.
(c) Find equations for all vertical asymptotes of the function f^{\prime}.

Solution: The vertical asymptotes occur, according to the asymptote theorem, at the zeros of the denominator of the reduced rational function. Thus, $x=2, x=0$, and $x=-5$.
3. (10 points) Let $f(x)=\frac{1}{2} x^{4}+x^{3}-6 x^{2}+3 x-2$.
(a) Find the interval(s) where f is concave upward.

Solution: First note that $f^{\prime}(x)=2 x^{3}+3 x^{2}-12 x+3$ and $f^{\prime \prime}(x)=$ $6 x^{2}+6 x-12=6\left(x^{2}+x-2\right)=6(x-1)(x+2)$, so $f^{\prime \prime}(x)=0$ for the two values $x=1$ and $x=-2$. Use the test interval technique on to find the intervals where $f^{\prime \prime}>0$. You find that f is concave upward on the two intervals $(-\infty,-2)$ and $(1, \infty)$.
(b) Find the inflection points of f, if there are any.

Solution: There are two inflection points, $(-2, f(-2)=(-2,-32)$ and $(1, f(1))=(1,-7 / 2)$.
4. (10 points) Solve each of the equations below for x in terms of the other letters.
(a) $4 a \cdot b^{2 x}=\sqrt{a}$

Solution: Use the laws of logarithms to find that

$$
x=\frac{-\log 4+(1 / 2) \log a}{2 \log b}
$$

(b) $\frac{a}{1+b^{x}}=b^{4}$

Solution: Again, use the laws of logarithms to find that

$$
x=\frac{\log \left(a b^{-4}-1\right)}{\log b} .
$$

(c) $4 e^{2 x-3}=28$.

Solution: Again, use the laws of logarithms to find that

$$
x=\frac{\ln 7+3}{2} \approx 2.4729 .
$$

5. (8 points) Find the rate of change of $s(t)=e^{3 t} \cdot \ln t$ when $t=1$.

Solution: Differentiate to get $s^{\prime}(t)=3 e^{3 t} \cdot \ln t+1 / t \cdot e^{3 t}$ and evaluate this at $t=1$ to get $s^{\prime}(1)=3 e^{3} \cdot \ln 1+1 \cdot e^{3}=e^{3} \approx 20.08$.
6. (12 points) A radioactive substance has a half-life of 28 years. Find an expression for the amount of the substance at time t if 30 grams were present initially.
Solution: Recall that the model is given by $Q(t)=A e^{-k t}$. We use the given data to solve for A and k as follows: $Q(0)=A e^{-k \cdot 0}=A=30$, and $Q(28)=.5 \cdot 30=15=30 \cdot e^{-28 t}$ which translates into $e^{-28 k}=1 / 2$. Taking the natural logs of both sides gives $k=\frac{-\ln 2}{-28} \approx 2.475 \cdot 10^{-2}=0.02475$. Thus, $Q(t)=30 e^{0.02475 t}$.
7. (16 points) Questions (a) through (d) refer to the graph of the fourth degree polynomial function f given below.

(a) The number of roots of $f^{\prime \prime}(x)=0$ is
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4

Solution: Since the graph is concave down from about -1 to about 2 and concave up on both sides of this interval, there must be two points of inflection, ie. two roots of $f^{\prime \prime}(x)=0$.
(b) The number of roots of $f^{\prime}(x)=1$ is
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4

Solution: Stare at the graph until you see that there are 3 places where the tangent line has a slope of 1 .
(c) The number of roots of $f(x)=1$ is
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4

Solution: Draw the horizontal line $y=1$ and notice that the line hits the graph at four places.
(d) A good estimate of $f^{\prime}(2)$ is
(A) -2
(B) 0
(C) 1
(D) 1.8
(E) 3.2

Solution: Notice that the line tangent to f at $x=2$ has negative slope, so the answer can only be -2 .
8. (12 points) An amount of $\$ 1000$ is invested at an interest rate of 9 percent per year with interest compounded a. monthly and b. continuously?
(a) How long does it take the monthly compounded account to double in value?
Solution: We're solving the equation $2=1 \cdot\left(1+\frac{0.09}{12}\right)^{12 t}$ for t. Take logs of both sides to find $t=\frac{\log 2}{12 \log 1.0075} \approx 7.7304$ years. This rounds off to $t=7.7$ years.
(b) How long does it take the continuously compounded account to triple in value? Express your answer to the nearest tenth of a year.
Solution: Here we're solving $3=1 \cdot e^{0.09 t}$. Taking the natural log of both sides get $t=\frac{\ln 3}{0.09} \approx 12.2$ years.
9. (20 points) Compute the following derivatives.
(a) Find f^{\prime} when $f(x)=x^{3} \cdot e^{2 x}$.

Solution: By the product rule, $f^{\prime}(x)=3 x^{2} e^{2 x}+2 e^{2 x} \cdot x^{3}$.
(b) Find g^{\prime} when $g(x)=\ln \left(2 x^{3}\right)$.

Solution: By the chain rule, $g^{\prime}(x)=\frac{6 x^{2}}{2 x^{3}}=\frac{3}{x}$.
(c) Find f^{\prime} when $f(x)=x \ln x-x$.

Solution: By the product rule, $f^{\prime}(x)=1 \ln x+x \cdot \frac{1}{x}-1=\ln x$.
(d) Find f^{\prime} when $f(x)=e^{x^{3}}$.

Solution: By the chain rule, $f^{\prime}(x)=3 x^{2} \cdot e^{x^{3}}$.
(e) Find f^{\prime} when $f(x)=x^{3} / e^{2 x}$.

Solution: By the quotient rule, $f^{\prime}(x)=\frac{3 x^{2} e^{2 x}-2 x^{3} e^{2 x}}{e^{4 x}}$.

