March 21, 2001

Name

The first 11 problems are true-false problems that count 3 points each. The rest are counted as marked. The total value of the test is 125 .
True-false section. Circle the correct choice. You do not need to show your work on these problems.

1. True or false. If f and g are differentiable and a and b are constants, then $\frac{d}{d x}[a f(x)+b g(x)]=a \frac{d}{d x} f(x)+b \frac{d}{d x} g(x)$.
2. True or false. If $f^{\prime}(x)>0$ for each x in the interval $(-1,1)$, then f is increasing on $(-1,1)$.
3. True or false. If $f^{\prime \prime}(x)<0$ on the interval (a, c) and $f^{\prime \prime}(x)>0$ on the interval (c, b), then the point $(c, f(c))$ is a point of inflection of f.
4. True or false. If $f(a)<0, f(b)>0$, and $f^{\prime}(x)>0$ for each x in (a, b), then there is one and only one number c in (a, b) such that $f(c)=0$.
5. True or false. The graph of a function cannot touch or intersect a horizontal asymptote to the graph of f.
6. True or false. If $f^{\prime}(c)=0$, then f has a relative maximum or a relative minimum at $x=c$.
7. True or false. If f has a relative maximum or a relative minimum at $x=c$, then $f^{\prime}(c)=0$.
8. True or false. If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$, then f has a relative maximum at $x=c$.
9. True or false. If f and g are differentiable, then $\frac{d}{d x}[f(x) g(x)]=f^{\prime}(x) g^{\prime}(x)$.
10. True or false. If f and g are differentiable, then $\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{f^{\prime}(x)}{g^{\prime}(x)}$.
11. True or false. If f and g are differentiable and $h(x)=f \circ g$, then $h^{\prime}(x)=$ $f[g(x)] g^{\prime}(x)$.
12. (12 points) Find the absolute maximum value and the absolute minimum value of the function $f(x)=x^{3}-4 x^{2}-x+4$ on the interval $-2 \leq x \leq 6$.
13. (12 points) Let f be the function whose graph is shown below. On the same axes, plot the graph of $f^{\prime}(x)$.

14. (12 points) Find the interval(s) where $f(x)=x^{3}-6 x^{2}-4 x+8$ is increasing.
15. (12 points) Find the relative maxima and relative minima, if any, of $g(x)=$ $x^{2}+\frac{16}{x^{2}}$.
16. (12 points) Let $f(x)=x^{4}+2 x^{3}-12 x^{2}+6 x$.
(a) Find the interval(s) where f is concave upward and the interval(s) where f is concave downward. Use the Test Interval technique to determine the places where $f^{\prime \prime}$ is positive and where it is negative.
(b) Find the inflection points of f, if there are any.
17. (12 points) Consider the rational function

$$
f(x)=\frac{\left(2 x^{2}-3\right)(x-2)}{\left(x^{2}-4\right)(x+1)}
$$

(a) Find the horizontal asymptotes.
(b) Find the vertical asymptotes.
(c) Compute $\lim _{x \rightarrow-\infty} f(x)$.

On all the following questions, show your work.
18. (20 points) The quantity demanded per month, x of a certain brand of electric shavers is related to the price, p, per shaver by the equation $p=-0.1 x+$ $10,000(0<x<20,000)$, where p is measured in dollars. The total monthly cost for manufacturing the shavers is given by $C(x)=0.00002 x^{3}-0.4 x^{2}+$ $10,000 x+20,000$. Construct the revenue function, $R(x)$. How is the profit related to revenue and cost? Find $P^{\prime}(x)$, where $P(x)$ denotes the profit function. How many shavers should be produced per month in order to maximize the company's profit? What is the maximum profit?

