April 23, $2014 \quad$ Name
The problems count as marked. The total number of points available is 172. Throughout this test, show your work. Using a calculator to circumvent ideas discussed in class will generally result in no credit.

1. (10 points) Find an equation for the line tangent to the graph of $y=\ln \left(x^{4}+1\right)$ at the point $(1, \ln (2))$.
Solution: The derivative of the function is $y^{\prime}=4 x^{3} /\left(x^{4}+1\right)$ so the slope of the line at $x=1$ is $\frac{4 \cdot 1}{1^{4}+1}=2$ and the line is $y-\ln (2)=2(x-1)$. That is, $y=2 x-2+\ln (2)$.
2. (20 points) A function $g(x)$ has been differentiated to get

$$
g^{\prime}(x)=2(x-3)^{2}-8 .
$$

(a) Find the interval(s) over which $g^{\prime}(x)$ is increasing.

Solution: Since $g^{\prime}(x)$ is a concave up quadratic polynomial with vertex $(3,-8)$, we conclude that g^{\prime} is increasing on $(3, \infty)$.
(b) Find the interval(s) over which $g(x)$ is increasing.

Solution: Solve $2(x-3)^{3}-8=0$ to find the two critical points of g, $x=1$ and $x=5$, and then build the sign chart for g^{\prime} to see that it's negative precisely on $(1,5)$, so g is increasing on $(-\infty, 1)$ and $(5, \infty)$.
(c) Find the interval(s) over which $g(x)$ is concave upwards.

Solution: Differentiate g^{\prime} to get $g^{\prime \prime}(x)=2 \cdot 2(x-3)$ which is positive on $(3, \infty)$, so that is the interval where g is concave upwards.
3. (15 points) Consider the function $f(x)=x^{3}-9 x^{2}+24 x$ on the interval $[0,5]$.
(a) What is the largest value of f on its domain? In other words, find the absolute maximum of f over $[0,5]$.
Solution: Find f^{\prime}. $f^{\prime}(x)=3 x^{3}-18 x+24=3\left(x^{2}-6 x+8\right)=3(x-2)(x-$ 4), so the critical points are $x=2$ and $x=4$. Checking the value of f at the endpoints and the critical points, we have $f(0)=0, f(2)=20, f(4)=$ 16 and $f(5)=20$. So the maximum value of f over the interval is 20 .
(b) What is the smallest value of f on its domain? In other words, find the absolute minimum of f over $[0,5]$.
Solution: The minimum value of f is zero. See above.
4. (15 points) Consider the function $f(x)=\ln \left[(2 x-13)(3 x-4)^{3} \sqrt{x^{2}+3}\right]$.
(a) Recall that $\ln (x)$ is defined precisely when $x>0$. Find the domain of f.

Solution: Build the sign chart for the function $g(x)=(2 x-13)(3 x-$ $4)^{3} \sqrt{x^{2}+3}$ to see that g is positive on $(-\infty, 4 / 3)$ and $(13 / 2, \infty)$. So the domain of the function f is the union of these two sets.
(b) Let $g(x)=(2 x-13)(3 x-4)^{3} \sqrt{x^{2}+3}$. Use logarithmic differentiation to find g^{\prime}. Find a decimal representation of $g^{\prime}(1)$.
Solution: Take logs of both sides to get $\ln g(x)=\ln [(2 x-13)(3 x-$ $\left.4)^{3} \sqrt{x^{2}+3}\right]$. This simplifies to $\ln g(x)=\ln (2 x-13)+\ln (3 x-4)^{3}+$ $\frac{1}{2} \ln \left(x^{2}+3\right)$. Now taking the derivative of both sides yields

$$
\frac{g^{\prime}(x)}{g(x)}=\frac{2}{2 x-13}+3 \frac{3}{3 x-4}+\frac{x}{x^{2}+3} .
$$

Finally, we can write $g^{\prime}(x)=g(x)\left[\frac{2}{2 x-13}+3 \frac{3}{3 x-4}+\frac{x}{x^{2}+3}\right]$. Thus, $g^{\prime}(1)=$ $g(1)\left(\frac{2}{2-13}+\frac{9}{3-4}+\frac{1}{1+3}\right)=22\left[-\frac{2}{11}-9+\frac{1}{4}\right]=-196.5$.
5. (20 points) Find all the critical points for each of the functions listed below.
(a) $T(x)=4\left(x^{2}+9\right)^{1 / 2}+22-2 x$.

Solution: $T^{\prime}(x)=2\left(x^{2}+9\right)^{-1 / 2} \cdot 2 x-2$. Setting this equal to zero, we get $\frac{4 x}{\sqrt{x^{2}+9}}=2$, which yields two critical points $x= \pm \sqrt{3}$.
(b) $f(x)=\ln (2 x+17)-2 x$.

Solution: Note that $f^{\prime}(x)=\frac{2}{2 x+17}-2$, so the critical is the solution to $4 x+34=2$, which is $x=-8$.
(c) $g(x)=e^{x^{2}-4 x}$.

Solution: $g^{\prime}(x)=e^{x^{2}-4 x} \cdot(2 x-4)$, so $x=2$ is the only critical point.
(d) $h(x)=\left(x^{2}-4\right)^{2 / 3}$.

Solution: $h^{\prime}(x)=\frac{2}{3}\left(x^{2}-4\right)^{-1 / 3} \cdot 2 x$, so the critical points are $x=0$ (stationary) and $x= \pm 2$ (singular).
6. (20 points) A botanist conjectures that the height of a certain type of pine tree can be modeled by a learning curve. To test his conjecture, he plants a 2 foot tall tree. He knows that eventually the tree will grow to 40 feet tall, its maximum height. Suppose that after one year, the tree is 4 feet tall.
(a) What does the model predict for the height of the tree after two years. Solution: We use the model $Q(t)=A-B e^{-k t}$ with the information that $Q(0)=2$ and $\lim _{t \rightarrow \infty} Q(t)=40$. So $A-B=2$ and $A=40$. Conclude that $B=38$.
(b) How many inches does the tree grow during the fourth year?

Solution: Since the tree grows to 4 feet after one year, we have $Q(1)=$ $4=40-38 e^{-k}$ which we solve for k to get $k=\ln (19)-\ln (18) \approx 0.05406$. So the number of inches grown during the fourth year is $Q(4)-Q(3)=$ $38\left(e^{-3 k}-e^{-4 k}\right) \approx 1.7$ feet, or 20.4 inches.
(c) What is the instantaneous rate of growth at $t=3.5$ years.

Solution: To find the instantaneous rate of growth at $t=3.5$ years, differentiate $Q . Q^{\prime}(t)=38 k e^{-k t}$ and at $t=3.5$ is 1.7003 feet or 20.40 inches.
(d) Describe the connection between the two answers (b) and (c).

Solution: These two quantities are quite close because $(Q(4)-Q(3) /(4-$ $3)$ is a good estimate of $Q^{\prime}(3.5)$. Look at the graph to see just how close these two are.
7. (30 points) Suppose we know that the function f has been differentiated and that $f^{\prime}(x)=2 x\left(x^{2}-3\right)^{4}$. Also, the point $(2,1 / 5)$ belongs to the graph of f.
(a) Find an equation for the line tangent to the graph of f at the point ($2,1 / 5$).
Solution: Since $m=f^{\prime}(2)=2 \cdot 2 \cdot\left(x^{2}-3\right)^{4}=4$, the line is given by $y-1 / 5=4(x-2)$.
(b) Find $f(1)$. Hint: f is an antiderivative of f^{\prime}.

Solution: Anti-differentiating $f^{\prime}(x)$ gives $f(x)=\left(x^{2}-3\right)^{5} / 5+C$. Evaluating $f(2)=0.2=1^{5} / 5+C$ which happens only when $C=0$. Thus $f(1)=(-2)^{5} / 5=-32 / 5$.
(c) Find the area of the region R bounded above by the graph of $f^{\prime}(x)$, below, by the x-axis and on the sides by the lines $x=0$ and $x=1$.
Solution: Just measure the growth of the antiderivative $f(x)$ of $f^{\prime}(x)$ over the interval $\left(x^{2}-3\right)^{5} /\left.5\right|_{0} ^{1}=(-2)^{5} / 5-(-3)^{5} / 5=211 / 5=42.2$.
8. (42 points) Compute each of the following integrals
(a) $\int_{1}^{2} \frac{(4 x-5)^{2}}{x} d x$

Solution: Rewrite the integrand to get $\int_{1}^{2} \frac{(4 x-5)^{2}}{x} d x=\int_{1}^{2} \frac{16 x^{2}-40 x+25}{x} d x=$ $\int_{1}^{2} 16 x-40+\frac{25}{x} d x$. Thus, we have $8 x^{2}-40 x+\left.25 \ln (x)\right|_{1} ^{2} \approx 1.328$.
(b) $\int_{0}^{1} \frac{d}{d x}\left(x^{3}-2 x^{2}+7\right) d x$

Solution: This is just $x^{3}-2 x^{2}+\left.7\right|_{0} ^{1}=-1$.
(c) $\int_{1}^{4} 3 x^{2} e^{x^{3}} d x$

Solution: $\left.e^{x^{3}}\right|_{1} ^{4}=e^{64}-e^{1}$.
(d) $\int_{2}^{3} \frac{x^{3}+2 x^{2}-x}{x} d x$

Solution: $\int\left(x^{3}+2 x^{2}-x\right) / x d x=\int x^{2}+2 x-1 d x=x^{3} / 3+x^{2}-\left.x\right|_{2} ^{3}=34 / 3$.
(e) $\int_{1}^{3} \frac{2 x+3}{x^{2}+3 x-3} d x$

Solution: By substitution, $\left(u=x^{2}+3 x-3\right), \left.\int \frac{2 x+3}{x^{2}+3 x-3} d x=\ln \right\rvert\, x^{2}+$ $3 x-3 \|_{1}^{3}=\ln (15) \approx 2.71$.
(f) $\int_{-1}^{1} 6 x^{5}\left(x^{6}+3\right)^{7} d x$

Solution: By substitution with $u=x^{6}+3, \int 6 x^{5}\left(x^{6}+3\right)^{7} d x=\left.\frac{\left(x^{6}+3\right)^{8}}{8}\right|_{-1} ^{1}=$ 0 .
(g) $\int_{1}^{2}(x-1)^{5} x d x$

Solution: By substitution with $u=x-1, d u=d x, \int(x-1)^{5} x d x=$ $\int u^{5}(u+1) d u=\int u^{6}+u^{5} d u=\frac{1}{7} u^{7}+\frac{1}{6} u^{6}=\frac{1}{7}(x-1)^{7}+\left.\frac{1}{6}(x-1)^{6}\right|_{1} ^{2}=$
$\frac{1}{7}+\frac{1}{6}=\frac{13}{42}$. $\frac{1}{7}+\frac{1}{6}=\frac{13}{42}$.

