February 27, 2013 Name

The total number of points available is 151. Throughout this test, **show your work.** Using a calculator to circumvent ideas discussed in class will generally result in no credit.

- 1. (12 points) Let $H(x) = \sqrt{x^2 2x + 4}$.
 - (a) Find two functions, f and g whose composition $f \circ g$ is H, and use the chain rule to find H'(x)

Solution: First, let $f(x) = x^{1/2}$ and let $g(x) = x^2 - 2x + 4$. Then, by the chain rule, $H'(x) = f'(g(x)) \cdot g'(x) = \frac{1}{2}(x^2 - 2x + 4)^{-1/2} \cdot (2x - 2) = \frac{2x-2}{2\sqrt{x^2-2x+4}}$.

- (b) What is H'(2)? Solution: $H'(2) = \frac{4-2}{2 \cdot 4^{1/2}} = 1/2$
- (c) Use the information in (b) to find an equation for the line tangent to the graph of H at the point (2, H(2)).
 Solution: Since H(2) = √4 = 2, using the point-slope form leads to y 2 = H'(2)(x 2) = (x 2)/2, so y = x/2 + 1.
- 2. (10 points) Solve the inequality $x^2 13x + 14 \le 2$. Write your answer in interval notation.

Solution: Rewrite the inequality as $x^2 - 13x + 12 \le 0$, so $(x - 12)(x - 1) \le 0$. Now the sign chart for (x - 12)(x - 1) shows that the function is at most zero on [1, 12]. 3. (12 points) Consider the function f defined by:

$$f(x) = \begin{cases} \sqrt{x+8} & \text{if } x < 1\\ 2 & \text{if } x = 1\\ 3(x-2)^2 & \text{if } x > 1 \end{cases}$$

(a) Is f continuous at x = 1? Your answer must make clear that you know and understand the definition of continuity. A yes/no correct answer is worth 1 point.

Solution: No, the limits from the left and right are both 3, but the value of f at 1 is 2, so $\lim_{x\to 1} f(x) \neq f(1)$.

(b) What is the slope of the line tangent to the graph of f at the point (8, 108)?

Solution: To find f'(8) first note that when x is near 8, $f(x) = 3(x-2)^2$ so f'(x) = 6(x-2). Thus, f'(8) = 6(8-2) = 36.

(c) Find f'(-2)

Solution: To find f'(-2), we must differentiate the part of f defined for x < 1. In this area, $f'(x) = (x+8)^{-1/2}/2$, so $f'(-2) = \frac{1}{2\sqrt{6}}$.

- 4. (12 points) Compute each of the following derivatives.
 - (a) Let $f(x) = (2x + 1)^2(x^2 + x 1)$. Find f'(x). Solution: Use the product rule to get $f'(x) = 2(2x + 1) \cdot 2(x^2 + x - 1) + (2x + 1) \cdot (2x + 1)^2$.
 - (b) Let $g(x) = \frac{x^2 + x 1}{x^2 + x + 1}$. Find g'(x).

Solution: By the quotient rule, $g'(x) = \frac{(2x+1)(x^2+x+1)-(2x+1)(x^2+x-1)}{(x^2+x+1)^2} = \frac{4x+2}{(x^2+x+1)^2}$.

- 5. (18 points) If a ball is thrown vertically upward from the roof of 128 foot building with a velocity of 64 ft/sec, its height after t seconds is $s(t) = 128 + 64t 16t^2$.
 - (a) What is the height the ball at time t = 1? Solution: s(1) = 176.
 - (b) What is the velocity of the ball at the time it reaches its maximum height?

Solution: s'(t) = v(t) = 0 when the ball reaches its max height.

- (c) What is the maximum height the ball reaches? **Solution:** Solve s'(t) = 64 - 32t = 0 to get t = 2 when the ball reaches its zenith. Thus, the max height is $s(2) = 128 + 64(2) - 16(2)^2 = 192$.
- (d) After how many seconds is the ball exactly 160 feet above the ground? **Solution:** Use the quadratic formula to solve $128 + 64t - 16t^2 = 160$. You get $t = \frac{4\pm\sqrt{16-8}}{2} = 2\pm\sqrt{2}$.
- (e) How fast is the ball going the first time it reaches the height 160? Solution: Evaluate s(t) when $t = 2 - \sqrt{2}$ to get $32\sqrt{2}$.
- (f) How fast is the ball going the second time it reaches the height 160? Solution: Evaluate s(t) when $t = 2 + \sqrt{2}$ to get $-32\sqrt{2}$. In other words the ball is going downward at the same rate it was moving upwards when first went through 160 feet.

- 6. (12 points) The cost of producing x units of stuffed alligator toys is $C(x) = 0.004x^2 + 4x + 6000$.
 - (a) Find the marginal cost at the production level of 1000 units. **Solution:** $C'(x) = \frac{d}{dx}(0.004x^2 + 4x + 6000) = 0.008x + 4 \text{ so } C'(1000) = 12.$
 - (b) What is the marginal average cost function? **Solution:** $\overline{C}(x) = 0.004x + 4 + 6000x^{-1}$, so $\overline{C}'(x) = 0.004 - 6000x^{-2}$.
 - (c) What is $\overline{C}'(500)$? Interpret your answer. In particular, what does the sign of \overline{C}' at x = 500 tell you? Solution: $\overline{C}'(500) = -0.02$, which means the average cost is decreasing when the production level is 500.

7. (35 points) Consider the table of values given for the functions f, f', g, and g':

$x \mid$	$\int f(x)$	f'(x)	g(x)	g'(x)
0	2	1	3	2
1	4	6	2	5
2	6	4	3	4
3	1	2	5	3
4	3	5	2	6
5	5	3	4	1
6	0	3	2	4

- (a) Let $L(x) = (f(x) + g(x))^2$. Compute L(2) and L'(2). Solution: L(2) = 81 and L'(x) = 2(f(x) + g(x))(f'(x) + g'(x)), so L'(2) = 2(f(2) + g(2))(f'(2) + g'(2)) = 2(6 + 3)(4 + 4) = 144.
- (b) Let $U(x) = f \circ f \circ f(x)$. Compute U(1) and U'(1). **Solution:** First, U(1) = f(f(f(1))) = f(3) = 1. By the chain rule, $U'(x) = f'(f \circ f(x)) \cdot f'((f(x)) \cdot f'(x), \text{ so } U'(1) = f'(f \circ f(1)) \cdot f'((f(1)) \cdot f'(1) = f'(f(f(1)) \cdot f'(f(1)) \cdot f'(1) = f'(3) \cdot f'(4) \cdot f'(1) = 2 \cdot 5 \cdot 6 = 60.$
- (c) Let $K(x) = g(x) + f(x^2)$. Compute K(2) and K'(2)Solution: K(2) = g(2) + f(4) = 3 + 3 = 6 and $K'(x) = g'(x) + f'(x^2)2x$, so $K'(2) = g'(2) + f'(2^2)2 \cdot 2 = 4 + 5 \cdot 4 = 24$.
- (d) Let Z(x) = 1/g(2x). Compute Z(3) and Z'(3). **Solution:** Z(3) = 1/g(6) = 1/2. Rewriting Z as $Z(x) = g(2x)^{-1}$, by the chain rule, we have $Z'(x) = -1g(2x)^{-2} \cdot g'(2x) \cdot 2$ so $Z'(3) = -1 \cdot (1/2)^{-2}(g(6))^2 \cdot 2 = -2$.
- (e) Let Q(x) = g(3x) + f(2x). Compute Q(2) and Q'(2). Solution: First, Q(2) = g(6) + f(4) = 2 + 3 = 5. By the sum rule and chain rule, Q'(x) = 3g'(3x) + 2f'(2x) so $Q'(2) = 3g'(6) + 2f'(4) = 3 \cdot 4 + 2 \cdot 5 = 22$.

8. (20 points) Find all critical points of $H(x) = (x+2)^3 \cdot (x^2-1)^2$. Then identify each critical point as the location of a local maximum, local minimum, or neither.

Solution: By the product rule, $H'(x) = 3(x+2)^2 \cdot (x^2-1)^2 + 2(x+2)^3(x^2-1)(2x) = 2(x+2)^2(x^2-1)[3(x^2-1)+2x\cdot 2(x+2)] = (x+2)^2(x^2-1)[3x^2-3+4x^2+8x]$, so the stationary points are x = -2 and $x = \pm 1$ and the zeros of $7x^2 + 8x - 3$. Using the quadratic formula, we find two roots, $\alpha = \frac{-4-\sqrt{37}}{7} \cong -1.44$ and $\beta = \frac{-4+\sqrt{37}}{7} \cong 0.29$ Since H'(x) is negative to the left of -2, between α and -1 and from β to 1, it follows that H has a local max at both α and β and relative minima at the critical points -2, -1, and 1.

9. (20 points) The purpose of this problem is to show how we can prove the power rule when the exponent is not a positive integer. In class we showed that when n is a positive integer,

$$\frac{d}{dx}x^n = nx^{n-1}.$$

But our proof does not work for fractional exponents. Let $g(x) = x^{1/4}$. We want to prove that $g'(x) = \frac{1}{4}x^{-3/4}$. To accomplish this, construct a function f(x) so that the composition $f \circ g(x)$ can be differentiated using just the power rule with positive integer exponents. Several choices will work here. This part of the problem is worth 6 points. Let $h(x) = f \circ g(x)$. Then use the chain rule to write $h'(x) = f'(g(x)) \cdot g'(x)$. You can find both h'(x) and f'(x) easily, so you can solve for g'(x). Do this to get the desired conclusion

$$g'(x) = \frac{1}{4}x^{-3/4}.$$

Solution: Let $f(x) = x^4$. Then $h(x) = (x^{1/4})^4 = x$, so h'(x) = 1. Note that $f'(x) = 4x^3$. Thus,

$$1 = h'(x) = f'(g(x)) \cdot g'(x) = 4(x^{1/4})^3 \cdot g'(x),$$

so $g'(x) = 1/(4x^{3/4}) = \frac{1}{4}x^{-3/4}$.

If 1600 square centimeters of material is available to make a box with a square base and an open top, ?nd the largest possible volume of the box. Volume = cubic centimeters.