February 27, 2013 Name

The total number of points available is 151. Throughout this test, show your work. Using a calculator to circumvent ideas discussed in class will generally result in no credit.

1. (12 points) Let $H(x)=\sqrt{x^{2}-2 x+4}$.
(a) Find two functions, f and g whose composition $f \circ g$ is H, and use the chain rule to find $H^{\prime}(x)$
Solution: First, let $f(x)=x^{1 / 2}$ and let $g(x)=x^{2}-2 x+4$. Then, by the chain rule, $H^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)=\frac{1}{2}\left(x^{2}-2 x+4\right)^{-1 / 2} \cdot(2 x-2)=$ $\frac{2 x-2}{2 \sqrt{x^{2}-2 x+4}}$.
(b) What is $H^{\prime}(2)$?

Solution: $H^{\prime}(2)=\frac{4-2}{2 \cdot 4^{1 / 2}}=1 / 2$
(c) Use the information in (b) to find an equation for the line tangent to the graph of H at the point $(2, H(2))$.
Solution: Since $H(2)=\sqrt{4}=2$, using the point-slope form leads to $y-2=H^{\prime}(2)(x-2)=(x-2) / 2$, so $y=x / 2+1$.
2. (10 points) Solve the inequality $x^{2}-13 x+14 \leq 2$. Write your answer in interval notation.
Solution: Rewrite the inequality as $x^{2}-13 x+12 \leq 0$, so $(x-12)(x-1) \leq 0$. Now the sign chart for $(x-12)(x-1)$ shows that the function is at most zero on $[1,12]$.
3. (12 points) Consider the function f defined by:

$$
f(x)= \begin{cases}\sqrt{x+8} & \text { if } x<1 \\ 2 & \text { if } x=1 \\ 3(x-2)^{2} & \text { if } x>1\end{cases}
$$

(a) Is f continuous at $x=1$? Your answer must make clear that you know and understand the definition of continuity. A yes/no correct answer is worth 1 point.
Solution: No, the limits from the left and right are both 3, but the value of f at 1 is 2 , so $\lim _{x \rightarrow 1} f(x) \neq f(1)$.
(b) What is the slope of the line tangent to the graph of f at the point $(8,108)$?
Solution: To find $f^{\prime}(8)$ first note that when x is near $8, f(x)=3(x-2)^{2}$ so $f^{\prime}(x)=6(x-2)$. Thus, $f^{\prime}(8)=6(8-2)=36$.
(c) Find $f^{\prime}(-2)$

Solution: To find $f^{\prime}(-2)$, we must differentiate the part of f defined for $x<1$. In this area, $f^{\prime}(x)=(x+8)^{-1 / 2} / 2$, so $f^{\prime}(-2)=\frac{1}{2 \sqrt{6}}$.
4. (12 points) Compute each of the following derivatives.
(a) Let $f(x)=(2 x+1)^{2}\left(x^{2}+x-1\right)$. Find $f^{\prime}(x)$.

Solution: Use the product rule to get $f^{\prime}(x)=2(2 x+1) \cdot 2\left(x^{2}+x-1\right)+$ $(2 x+1) \cdot(2 x+1)^{2}$.
(b) Let $g(x)=\frac{x^{2}+x-1}{x^{2}+x+1}$. Find $g^{\prime}(x)$.

Solution: By the quotient rule, $g^{\prime}(x)=\frac{(2 x+1)\left(x^{2}+x+1\right)-(2 x+1)\left(x^{2}+x-1\right)}{\left(x^{2}+x+1\right)^{2}}=$ $\frac{4 x+2}{\left(x^{2}+x+1\right)^{2}}$.
5. (18 points) If a ball is thrown vertically upward from the roof of 128 foot building with a velocity of $64 \mathrm{ft} / \mathrm{sec}$, its height after t seconds is $s(t)=128+$ $64 t-16 t^{2}$.
(a) What is the height the ball at time $t=1$?

Solution: $s(1)=176$.
(b) What is the velocity of the ball at the time it reaches its maximum height?
Solution: $s^{\prime}(t)=v(t)=0$ when the ball reaches its max height.
(c) What is the maximum height the ball reaches?

Solution: Solve $s^{\prime}(t)=64-32 t=0$ to get $t=2$ when the ball reaches its zenith. Thus, the max height is $s(2)=128+64(2)-16(2)^{2}=192$.
(d) After how many seconds is the ball exactly 160 feet above the ground?

Solution: Use the quadratic formula to solve $128+64 t-16 t^{2}=160$. You get $t=\frac{4 \pm \sqrt{16-8}}{2}=2 \pm \sqrt{2}$.
(e) How fast is the ball going the first time it reaches the height 160 ?

Solution: Evaluate $s(t)$ when $t=2-\sqrt{2}$ to get $32 \sqrt{2}$.
(f) How fast is the ball going the second time it reaches the height 160 ?

Solution: Evaluate $s(t)$ when $t=2+\sqrt{2}$ to get $-32 \sqrt{2}$. In other words the ball is going downward at the same rate it was moving upwards when first went through 160 feet.
6. (12 points) The cost of producing x units of stuffed alligator toys is $C(x)=$ $0.004 x^{2}+4 x+6000$.
(a) Find the marginal cost at the production level of 1000 units.

Solution: $C^{\prime}(x)=\frac{d}{d x}\left(0.004 x^{2}+4 x+6000\right)=0.008 x+4$ so $C^{\prime}(1000)=12$.
(b) What is the marginal average cost function?

Solution: $\bar{C}(x)=0.004 x+4+6000 x^{-1}$, so $\bar{C}^{\prime}(x)=0.004-6000 x^{-2}$.
(c) What is $\bar{C}^{\prime}(500)$? Interpret your answer. In particular, what does the sign of \bar{C}^{\prime} at $x=500$ tell you?
Solution: $\bar{C}^{\prime}(500)=-0.02$, which means the average cost is decreasing when the production level is 500 .
7. (35 points) Consider the table of values given for the functions f, f^{\prime}, g, and g^{\prime} :

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
0	2	1	3	2
1	4	6	2	5
2	6	4	3	4
3	1	2	5	3
4	3	5	2	6
5	5	3	4	1
6	0	3	2	4

(a) Let $L(x)=(f(x)+g(x))^{2}$. Compute $L(2)$ and $L^{\prime}(2)$.

Solution: $L(2)=81$ and $L^{\prime}(x)=2(f(x)+g(x))\left(f^{\prime}(x)+g^{\prime}(x)\right)$, so $L^{\prime}(2)=2(f(2)+g(2))\left(f^{\prime}(2)+g^{\prime}(2)\right)=2(6+3)(4+4)=144$.
(b) Let $U(x)=f \circ f \circ f(x)$. Compute $U(1)$ and $U^{\prime}(1)$.

Solution: First, $U(1)=f(f(f(1)))=f(3)=1$. By the chain rule, $U^{\prime}(x)=f^{\prime}(f \circ f(x)) \cdot f^{\prime}\left((f(x)) \cdot f^{\prime}(x)\right.$, so $U^{\prime}(1)=f^{\prime}(f \circ f(1)) \cdot f^{\prime}((f(1)) \cdot$ $f^{\prime}(1)=f^{\prime}\left(f\left((f(1)) \cdot f^{\prime}(f(1)) \cdot f^{\prime}(1)=f^{\prime}(3) \cdot f^{\prime}(4) \cdot f^{\prime}(1)=2 \cdot 5 \cdot 6=60\right.\right.$.
(c) Let $K(x)=g(x)+f\left(x^{2}\right)$. Compute $K(2)$ and $K^{\prime}(2)$

Solution: $K(2)=g(2)+f(4)=3+3=6$ and $K^{\prime}(x)=g^{\prime}(x)+f^{\prime}\left(x^{2}\right) 2 x$, so $K^{\prime}(2)=g^{\prime}(2)+f^{\prime}\left(2^{2}\right) 2 \cdot 2=4+5 \cdot 4=24$.
(d) Let $Z(x)=1 / g(2 x)$. Compute $Z(3)$ and $Z^{\prime}(3)$.

Solution: $Z(3)=1 / g(6)=1 / 2$. Rewriting Z as $Z(x)=g(2 x)^{-1}$, by the chain rule, we have $Z^{\prime}(x)=-1 g(2 x)^{-2} \cdot g^{\prime}(2 x) \cdot 2$ so $Z^{\prime}(3)=$ $-1 \cdot(1 / 2)^{-2}(g(6))^{2} \cdot 2=-2$.
(e) Let $Q(x)=g(3 x)+f(2 x)$. Compute $Q(2)$ and $Q^{\prime}(2)$.

Solution: First, $Q(2)=g(6)+f(4)=2+3=5$. By the sum rule and chain rule, $Q^{\prime}(x)=3 g^{\prime}(3 x)+2 f^{\prime}(2 x)$ so $Q^{\prime}(2)=3 g^{\prime}(6)+2 f^{\prime}(4)=$ $3 \cdot 4+2 \cdot 5=22$.
8. (20 points) Find all critical points of $H(x)=(x+2)^{3} \cdot\left(x^{2}-1\right)^{2}$. Then identify each critical point as the location of a local maximum, local minimum, or neither.
Solution: By the product rule, $H^{\prime}(x)=3(x+2)^{2} \cdot\left(x^{2}-1\right)^{2}+2(x+2)^{3}\left(x^{2}-\right.$ 1) $(2 x)=2(x+2)^{2}\left(x^{2}-1\right)\left[3\left(x^{2}-1\right)+2 x \cdot 2(x+2)\right]=(x+2)^{2}\left(x^{2}-1\right)\left[3 x^{2}-\right.$ $\left.3+4 x^{2}+8 x\right]$, so the stationary points are $x=-2$ and $x= \pm 1$ and the zeros of $7 x^{2}+8 x-3$. Using the quadratic formula, we find two roots, $\alpha=$ $\frac{-4-\sqrt{37}}{7} \cong-1.44$ and $\beta=\frac{-4+\sqrt{37}}{7} \cong 0.29$ Since $H^{\prime}(x)$ is negative to the left of -2 , between α and -1 and from β to 1 , it follows that H has a local max at both α and β and relative minima at the critical points $-2,-1$, and 1 .
9. (20 points) The purpose of this problem is to show how we can prove the power rule when the exponent is not a positive integer. In class we showed that when n is a positive integer,

$$
\frac{d}{d x} x^{n}=n x^{n-1}
$$

But our proof does not work for fractional exponents. Let $g(x)=x^{1 / 4}$. We want to prove that $g^{\prime}(x)=\frac{1}{4} x^{-3 / 4}$. To accomplish this, construct a function $f(x)$ so that the composition $f \circ g(x)$ can be differentiated using just the power rule with positive integer exponents. Several choices will work here. This part of the problem is worth 6 points. Let $h(x)=f \circ g(x)$. Then use the chain rule to write $h^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)$. You can find both $h^{\prime}(x)$ and $f^{\prime}(x)$ easily, so you can solve for $g^{\prime}(x)$. Do this to get the desired conclusion

$$
g^{\prime}(x)=\frac{1}{4} x^{-3 / 4}
$$

Solution: Let $f(x)=x^{4}$. Then $h(x)=\left(x^{1 / 4}\right)^{4}=x$, so $h^{\prime}(x)=1$. Note that $f^{\prime}(x)=4 x^{3}$. Thus,

$$
1=h^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)=4\left(x^{1 / 4}\right)^{3} \cdot g^{\prime}(x)
$$

so $g^{\prime}(x)=1 /\left(4 x^{3 / 4}\right)=\frac{1}{4} x^{-3 / 4}$.
If 1600 square centimeters of material is available to make a box with a square base and an open top, ?nd the largest possible volume of the box. Volume $=$ cubic centimeters.

