October 27, 2011
Name
The problems count as marked. The total number of points available is 148. Throughout this test, show your work.

1. (9 points) Let $f(x)=x^{4}-1 / x-3$.
(a) Compute $f^{\prime}(x)$

Solution: $f^{\prime}(x)=4 x^{3}+x^{-2}$
(b) What is $f^{\prime}(1)$?

Solution: $f^{\prime}(1)=4 \cdot 1^{3}+1=5$.
(c) Use the information in (b) to find an equation for the line tangent to the graph of f at the point $(1, f(1))$.
Solution: Since $f(1)=1^{4}-1 / 1-3=-3$, using the point-slope form leads to $y+3=f^{\prime}(1)(x-1)=5(x-1)$, so $y=5 x-8$.
2. (12 points) Consider the function f defined by:

$$
f(x)= \begin{cases}x+x^{3} & \text { if } x<1 \\ 2 & \text { if } x=1 \\ 2 x^{3 / 2} & \text { if } x>1\end{cases}
$$

(a) Is f continuous at $x=1$?

Solution: Yes, the limits from the left and right are both 2, and the value of f at 1 is 2 .
(b) What is the slope of the line tangent to the graph of f at the point $(4,16)$?

Solution: To find $f^{\prime}(4)$ first note that when x is near $8, f(x)=2 x^{3 / 2}$ so $f^{\prime}(x)=2 \cdot \frac{3}{2} \cdot x^{1 / 2}$. Thus, $f^{\prime}(4)=2 \cdot \frac{3}{2} \cdot 4^{1 / 2}=3 \cdot 2=6$.
(c) Find $f^{\prime}(-3)$

Solution: To find $f^{\prime}(-3)$, we must differentiate the part of f defined for $x<1$. In this area, $f^{\prime}(x)=1+3 x^{2}$, so $f^{\prime}(-3)=1+3(-3)^{2}=28$.
3. (10 points) The cost of producing x units of stuffed alligator toys is $C(x)=$ $-0.003 x^{2}+6 x+6000$ for $0 \leq x \leq 1000$.
(a) Find the marginal cost at the production level of 1000 units.

Solution: $C^{\prime}(x)=\frac{d}{d x}-0.003 x^{2}+6 x+6000=-0.006 x+6$ so $C^{\prime}(1000)=$ $-6+6=0$.
(b) Find the (incremental) cost of producing the $1000^{\text {th }}$ toy.

Solution: $C(1000)-C(999)=-0.003(1000-999)^{2}+6(1000-999)+$ $6000-6000=-0.003(1999)+6=0.003$.
4. (15 points) Consider the function $f(x)=x^{3}-6 x$ defined on the interval $-2 \leq x \leq 3$.
(a) Find the critical points of f.

Solution: Since $f^{\prime}(x)=3 x^{2}-6$, the critical points at $x= \pm \sqrt{2}$.
(b) Find the absolute minimum of f and the x-value where it occurs.

Solution: Evaluate f at the critical points and the endpoints to find $f(-\sqrt{2})=4 \sqrt{2}, f(\sqrt{2})=-4 \sqrt{2}, f(-2)=4$, and $f(3)=9$. So the absolute minimum of f is $-4 \sqrt{2}$ and it occurs at $x=\sqrt{2}$.
(c) Find the absolute maximum of f and the x-value where it occurs.

Solution: The maximum value of f is 9 and it occurs at $x=3$
5. (30 points) Consider the table of values given for the functions f, f^{\prime}, g, and g^{\prime} :

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
0	2	1	6	2
1	4	6	2	5
2	3	4	2	3
3	1	2	5	3
4	3	5	2	5
5	5	3	4	1
6	0	3	2	4

(a) Let $L(x)=f(x) \cdot g(x)$. Compute $L^{\prime}(5)$.

Solution: $L^{\prime}(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$, so $L^{\prime}(5)=f^{\prime}(5) g(5)+f(5) g^{\prime}(5)=$ $3 \cdot 4+5 \cdot 1=17$.
(b) Let $U(x)=f \circ f(x)$. Compute $U^{\prime}(4)$.

Solution: $\quad U^{\prime}(x)=f^{\prime}(f(x)) f^{\prime}(x)$ so $U^{\prime}(4)=f^{\prime}(f(4)) f^{\prime}(4)=2 \cdot 5=10$.
(c) Let $K(x)=(g(x)+f(x))^{3}$. Compute $K(2)$.

Solution: $K(2)=(g(2)+f(2))^{3}=(2+3)^{3}=125$.
(d) Again, $K(x)=(g(x)+f(x))^{3}$. Compute $K^{\prime}(2)$.

Solution: $K^{\prime}(x)=3(g(x)+f(x))^{2} \cdot\left(g^{\prime}(x)+f^{\prime}(x)\right)$, so $K^{\prime}(2)=3(2+$ $3)^{2}(3+4)=525$.
(e) Let $V(x)=f\left(x^{2}\right) \div g(x)$. Compute $V^{\prime}(2)$.

Solution: By the quotient rule, $V^{\prime}(x)=\left[f^{\prime}\left(x^{2}\right) \cdot 2 x \cdot g(x)-g^{\prime}(x) f\left(x^{2}\right)\right] \div$ $(g(x))^{2}$, so $V^{\prime}(2)=\left[f^{\prime}(4) \cdot 2 \cdot 2 g(2)-g^{\prime}(2) \cdot f(4)\right] \div(g(2))^{2}=[5 \cdot 4 \cdot 2-3 \cdot 3] \div 4=$ 31/4.
(f) Let $Z(x)=g\left(x^{2}+f(x)\right)$. Compute $Z^{\prime}(1)$.

Solution: Again by the chain rule and the product rule, $Z^{\prime}(x)=g^{\prime}\left(x^{2}+\right.$
$f(x)) \cdot \frac{d}{d x}\left(x^{2}+f(x)\right)=g^{\prime}\left(x^{2}+f(x)\right) \cdot\left(2 x+f^{\prime}(x)\right)$, so $Z^{\prime}(1)=g^{\prime}(1+f(1))$. $\left(2+f^{\prime}(1)\right)=g^{\prime}(5) \cdot(2+6)=1 \cdot 8=8$.
6. (10 points) Compute the following derivatives.
(a) Let $f(x)=x+\sqrt{1+x^{3}}$. Find $\frac{d}{d x} f(x)$.

Solution: Using the power rule and chain rule, $f^{\prime}(x)=1+\frac{1}{2}\left(1+x^{3}\right)^{-1 / 2}$. $\left(3 x^{2}\right)$.
(b) Let $g(x)=\frac{x^{3}}{x^{2}+1}$. What is $g^{\prime}(x)$?

Solution: Use the quotient rule to get $g^{\prime}(x)=3 x^{2}\left(1+x^{2}\right)-2 x\left(x^{3}\right) \div$ $\left(1+x^{2}\right)^{2}=\frac{x^{4}+3 x^{2}}{\left(1+x^{2}\right)^{2}}$.
7. (10 points) Find two critical points of $h(x)=(x+2) \cdot(2 x-1)^{2}$.

Solution: By the product rule, $\frac{d}{d x}(x+2) \cdot(2 x-1)^{2}=1(2 x-1)^{2}+2(2 x-1) \cdot 2$. $(x+2)$. Simplifying, we have $h^{\prime}(x)=(2 x-1)[2 x-1+4(x+2)]=(2 x-1)(6 x+7)$, which has two zeros, $x=\frac{1}{2}$ and $x=-\frac{7}{6}$.
8. (30 points) Consider the function

$$
r(x)=\frac{\left(x^{2}-1\right)(3 x+1)}{\left(2 x^{2}-8\right)(x+1)}
$$

Use the Test Interval Technique to find the sign chart of $r(x)$. Find the horizontal and vertical asymptotes, and sketch the graph of r. Your graph must be consistent with the information you find in the sign chart.

Solution:

Solution: Notice first that r is not in factored form. Factoring reveals that the numerator and denominator have common factors. Thus

$$
r(x)=\frac{(x-1)(x+1)(3 x+1)}{2(x-2)(x+2)(x+1)}
$$

We can remove the common factor $x+1$ with the understanding that we are (very slightly) enlarging the domain of $r: r(x)=\frac{(x-1)(3 x+1)}{2(x-2)(x+2)}$. Next find the branch points. These are the points at which r can change signs. Precisely, they are the zeros of the numerator and of the denominator. They are $-1 / 3,1,-2,2$. The horizontal asymptote is $y=3 / 2$, the vertical asymptotes are $x=2$ and $x=-2$ and the zeros of r are $x=-1 / 3$ and $x=1$. Again we select test points and find the sign of f at of these points to get the sign chart.

9. (7 points) Suppose $f(x)$ satisfies $f(3)=2$ and the line tangent to the graph of f at the point $(3,2)$ is $2 y+3 x=13$. What is $f^{\prime}(3)$?
Solution: The slope of the line is $-\frac{3}{2}$, so $f^{\prime}(3)=-3 / 2$.
10. (15 points) Consider the function $h(x)=x^{4}+2 x^{3}-12 x^{2}+60 x$. Find the
intervals over which h is concave upwards. Make clear which function you're building the sign chart for and what the test points are.
Solution: Since $h^{\prime}(x)=4 x^{3}+6 x^{2}-24 x+60$ and $h^{\prime}(x)=12 x^{2}+12 x-24=$ $12(x+2)(x-1)$, we can see that $h^{\prime \prime}(x)$ is positive over $(-\infty,-2)$ and $(1, \infty)$, and negative on $(-2,1)$, so h is concave upwards on $(-\infty,-2)$ and $(1, \infty)$.

