October 27, $2011 \quad$ Name
The problems count as marked. The total number of points available is 148. Throughout this test, show your work.

1. (9 points) Let $f(x)=x^{4}-1 / x-3$.
(a) Compute $f^{\prime}(x)$
(b) What is $f^{\prime}(1)$?
(c) Use the information in (b) to find an equation for the line tangent to the graph of f at the point $(1, f(1))$.
2. (12 points) Consider the function f defined by:

$$
f(x)= \begin{cases}x+x^{3} & \text { if } x<1 \\ 2 & \text { if } x=1 \\ 2 x^{3 / 2} & \text { if } x>1\end{cases}
$$

(a) Is f continuous at $x=1$?
(b) What is the slope of the line tangent to the graph of f at the point $(4,16)$?
(c) Find $f^{\prime}(-3)$
3. (10 points) The cost of producing x units of stuffed alligator toys is $C(x)=$ $-0.003 x^{2}+6 x+6000$ for $0 \leq x \leq 1000$.
(a) Find the marginal cost at the production level of 1000 units.
(b) Find the (incremental) cost of producing the $1000^{\text {th }}$ toy.
4. (15 points) Consider the function $f(x)=x^{3}-6 x$ defined on the interval $-2 \leq x \leq 3$.
(a) Find the critical points of f.
(b) Find the absolute minimum of f and the x-value where it occurs.
(c) Find the absolute maximum of f and the x-value where it occurs.
5. (30 points) Consider the table of values given for the functions f, f^{\prime}, g, and g^{\prime} :

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
0	2	1	6	2
1	4	6	2	5
2	3	4	2	3
3	1	2	5	3
4	3	5	2	5
5	5	3	4	1
6	0	3	2	4

(a) Let $L(x)=f(x) \cdot g(x)$. Compute $L^{\prime}(5)$.
(b) Let $U(x)=f \circ f(x)$. Compute $U^{\prime}(4)$.
(c) Let $K(x)=(g(x)+f(x))^{3}$. Compute $K(2)$.
(d) Again, $K(x)=(g(x)+f(x))^{3}$. Compute $K^{\prime}(2)$.
(e) Let $V(x)=f\left(x^{2}\right) \div g(x)$. Compute $V^{\prime}(2)$.
(f) Let $Z(x)=g\left(x^{2}+f(x)\right)$. Compute $Z^{\prime}(1)$.
6. (10 points) Compute the following derivatives.
(a) Let $f(x)=x+\sqrt{1+x^{3}}$. Find $\frac{d}{d x} f(x)$.
(b) Let $g(x)=\frac{x^{3}}{x^{2}+1}$. What is $g^{\prime}(x)$?
7. (10 points) Find two critical points of $h(x)=(x+2) \cdot(2 x-1)^{2}$.
8. (30 points) Consider the function

$$
r(x)=\frac{\left(x^{2}-1\right)(3 x+1)}{\left(2 x^{2}-8\right)(x+1)} .
$$

Use the Test Interval Technique to find the sign chart of $r(x)$. Find the horizontal and vertical asymptotes, and sketch the graph of r. Your graph must be consistent with the information you find in the sign chart.

9. (7 points) Suppose $f(x)$ satisfies $f(3)=2$ and the line tangent to the graph of f at the point $(3,2)$ is $2 y+3 x=13$. What is $f^{\prime}(3)$?
10. (15 points) Consider the function $h(x)=x^{4}+2 x^{3}-12 x^{2}+60 x$. Find the intervals over which h is concave upwards. Make clear which function you're building the sign chart for and what the test points are.

