March 2, $2011 \quad$ Name
The problems count as marked. The total number of points available is 128. Throughout this test, show your work.

1. (12 points) Let $f(x)=x^{2}-2 x-3$.
(a) Compute $f^{\prime}(x)$

Solution: $f^{\prime}(x)=2 x-2$
(b) What is $f^{\prime}(2)$?

Solution: $f^{\prime}(2)=2$.
(c) Use the information in (b) to find an equation for the line tangent to the graph of f at the point $(2, f(2))$.
Solution: Since $f(2)=2^{2}-2 \cdot 2-3=-3$, using the point-slope form leads to $y+3=f^{\prime}(2)(x-2)=2(x-2)$, so $y=2 x-7$.
2. (12 points) Consider the function f defined by:

$$
f(x)= \begin{cases}x+x^{3} & \text { if } x<1 \\ 2 & \text { if } x=1 \\ 2 x^{1 / 2} & \text { if } x>1\end{cases}
$$

(a) Find an equation for the line tangent to the graph of f at the point $(4,4)$.

Solution: To find $f^{\prime}(4)$ first note that when x is near $8, f(x)=2 x^{1 / 2}$ so $f^{\prime}(x)=2 \frac{1}{2} x^{-1 / 2}$. Thus, $f^{\prime}(4)=2 \frac{1}{2} 4^{-1 / 2}=2 \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{2}$. So the line in question is $y-4=\frac{1}{2}(x-4)$, which, in slope-intercept form is $y=x / 2+2$.
(b) Find an equation for the line tangent to the graph of f at the point $(-2,-10)$.
Solution: Note that $f^{\prime}(x)=1+3 x^{2}$ when $x<1$. So we have $f^{\prime}(-2)=$ $1+3(-2)^{2}=13$. So the tangent line has slope 13. Thus, $y+10=13(x+2)$, which can also be written $y=13 x+16$.
3. (12 points) The function f satisfies $f(2)=5$ and its graph has a tangent line L at the point $(2,5)$. The line L has a y-intercept of 4 . What is $f^{\prime}(2)$? Note, a correct answer without supporting work is worth only 1 point.
Solution: The tangent line goes through the two points $(2,5)$ and $(0,4)$, so its slope is $\frac{5-4}{2-0}=\frac{1}{2}$, so $f^{\prime}(2)=1 / 2$.
4. (15 points) If a ball is thrown vertically upward from the roof of 212 foot building with a velocity of $48 \mathrm{ft} / \mathrm{sec}$, its height after t seconds is $s(t)=212+$ $48 t-16 t^{2}$.
(a) What is the height the ball at time $t=0$?

Solution: $s(0)=212$.
(b) What is the velocity of the ball at the time it reaches its maximum height?
Solution: $s^{\prime}(t)=v(t)=0$ when the ball reaches its max height.
(c) At what time is the velocity zero?

Solution: Solve $48-32 t=0$ to get $t=3 / 2$.
(d) What is the maximum height the ball reaches?

Solution: Solve $s^{\prime}(t)=48-32 t=0$ to get $t=3 / 2$ when the ball reaches its zenith. Thus, the max height is $s(3 / 2)=212+48(3 / 2)-16(3 / 2)^{2}=$ 248.
(e) What is the velocity of the ball when it hits the ground (height 0)?

Solution: Solve $s(t)=0$ using the quadratic formula to get $t=\frac{3 \pm \sqrt{9+53}}{2}=$ $\frac{3 \pm \sqrt{62}}{2} \approx 5.44$, since the larger is the only reasonable answer. Find $s^{\prime}(5.44) \approx-125.98$ feet $/ \mathrm{sec}$.
5. (10 points) Find a point on the graph of f at which the slope of the tangent line is 3 , where

$$
f(x)=x-\frac{1}{x} .
$$

Are there any other points where the slope is 3 ?
Solution: $f^{\prime}(x)=1+\frac{1}{x^{2}}$, which we set equal to 3 to get $1 / x^{2}=2$, or $x=\sqrt{2} / 2$. The other solution also works, $x=-\sqrt{2} / 2$.
6. (10 points) The cost of producing x units of stuffed alligator toys is $C(x)=$ $-0.003 x^{2}+6 x+6000$ for $0 \leq x \leq 1000$.
(a) Find the marginal cost at the production level of 500 units.

Solution: $C^{\prime}(x)=\frac{d}{d x}-0.003 x^{2}+6 x+6000=-0.006 x+6$ so $C^{\prime}(500)=$ $-3+6=3$.
(b) Find the (incremental) cost of producing the $501^{\text {st }}$ toy.

Solution: $C(501)-C(500)=-0.003\left(501^{2}-500^{2}\right)+6(501-500)+$ $6000-6000=-0.003(1001)+6=2.997$.
7. (32 points) Consider the table of values given for the functions f, f^{\prime}, g, and g^{\prime} :

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
0	2	1	3	2
1	4	6	2	5
2	6	4	3	4
3	1	2	5	3
4	3	5	2	6
5	5	3	4	1
6	0	3	2	4

(a) Let $L(x)=(f(x)+g(x))^{3}$. Compute $L^{\prime}(2)$.

Solution: $L^{\prime}(x)=3(f(x)+g(x))^{2}\left(f^{\prime}(x)+g^{\prime}(x)\right)$, so $L^{\prime}(2)=3(f(2)+$ $g(2))^{2}\left(f^{\prime}(2)+g^{\prime}(2)\right)=3(6+3)^{2}(4+4)=1944$.
(b) Let $U(x)=g \circ g \circ g(x)$. Compute $U^{\prime}(1)$.

Solution: By the chain rule, $U^{\prime}(x)=g^{\prime}(g \circ g(x)) \cdot g^{\prime}(g(x)) \cdot g^{\prime}(x)$, so $U^{\prime}(1)=g^{\prime}(g \circ g(1)) \cdot g^{\prime}(g(1)) \cdot g^{\prime}(1)=g^{\prime}(g(g(1))) \cdot g^{\prime}(g(1)) \cdot g^{\prime}(1)=$ $g^{\prime}(3) \cdot g^{\prime}(2) \cdot g^{\prime}(1)=3 \cdot 4 \cdot 5=60$.
(c) Let $K(x)=\frac{g(x)+f(x)}{g(x) f(x)}$. Compute $K^{\prime}(2)$

Solution: $K^{\prime}(x)=\frac{\left(g^{\prime}(x)+f^{\prime}(x)\right)(g(x) f(x))-\left(f^{\prime}(x) g(x)+g^{\prime}(x) f(x)\right)(f(x)+g(x))}{(f(x) g(x))^{2}}$. So $K^{\prime}(2)=$ $\frac{\left(g^{\prime}(2)+f^{\prime}(2)\right)(g(2) f(2))-\left(f^{\prime}(2) g(2)+g^{\prime}(2) f(2)\right)(f(2)+g(2))}{(f(2) g(2))^{2}}=\frac{36}{81}=\frac{4}{9}$.
(d) Let $Z(x)=x^{2}-\frac{f(x)}{x}$. Compute $Z^{\prime}(3)$.

Solution: By the quotient rule, $Z^{\prime}(x)=2 x-\frac{f^{\prime}(x)(x)-1 f(x)}{x^{2}}$ so $Z^{\prime}(3)=$ $6-\frac{f^{\prime}(3)(3)-f(3)}{9}=6-\frac{2 \cdot 3-1}{9}=49 / 9$.
8. (25 points) Let $H(x)=\left(x^{2}-1\right)^{2}(5 x+7)+\left(x^{2}-1\right)(5 x+7)^{2}$.
(a) Build the sign chart for $H(x)$.

Solution: Factor out the common terms to get $H(x)=\left(x^{2}-1\right)(5 x+$ 7) $\left[x^{2}-1+5 x+7\right]$. The zeros of $x^{2}-1$ are $x= \pm 1$ and the zero of $5 x+7$ is $x=-7 / 5$. The quadratic $x^{2}+5 x+6$ factors into $(x+3)(x+2)$, so its two zeros are $x=-3$ and $x=-2$.
(b) Use the information from (a) to find the domain of the function $G(x)=$ $\sqrt{\left(x^{2}-1\right)^{2}(5 x+7)+\left(x^{2}-1\right)(5 x+7)^{2}}$. Express your answer in interval notation.
Solution: Looking at the sign chart above, we have $[-3,-2] \cup\left[-\frac{7}{5},-1\right] \cup$ $[1, \infty)$.

