November 4, 2010 Name

The problems count as marked. The total number of points available is 145. Throughout this test, show your work.

- 1. (10 points) Suppose f and g are functions for which both $\lim_{x\to a} f(x) = 0$ and $\lim_{x\to a} g(x) = 0$. Which of the following is true? Circle your answer.

 - (A) $\lim_{x \to a} \frac{f(x)}{g(x)} = 0$ (B) $\lim_{x \to a} \frac{f(x)}{g(x)}$ does not exist (C) $\lim_{x \to a} \frac{f(x)}{g(x)} = \infty$
 - (D) $\lim_{x\to a} \frac{f(x)}{g(x)}$ can be any real number (E) $\lim_{x\to a} \frac{f(x)}{g(x)} = 1$

- 2. (20 points) Let $f(x) = \sqrt{x^4 3x + 11}$.
 - (a) Compute f'(x)
 - (b) What is f'(1)?
 - (c) Use the information in (b) to find an equation for the line tangent to the graph of f at the point (1, f(1)).

3. (20 points) Use calculus to find all relative max and min and also all asymptotes of the function g(x) = 4x + 16/x.

Then, use calculus to discuss the concavity of g(x).

4. (20 points) Let

$$H(x) = (2x+1)^2(3x-4)^2.$$

(a) For what values of x is the line tangent to the graph of H(x) parallel to the line y = 7?

(b) Find the intervals over which H(x) is increasing.

5. (20 points) Find the symbolic representation of the function G whose graph is show below.

As a hint, the function needs six clauses, as shown.

$$G(x) = \begin{cases} & \text{if } -2 \le x < -1 \\ & \text{if } x = -1 \\ & \text{if } -1 < x < 1 \\ & \text{if } x = 1 \\ & \text{if } 1 < x < 2 \\ & \text{if } 2 \le x \le 4 \end{cases}$$

6. (20 points) Use calculus to find the point P = (u, v) on the line 2x + 3y = 7 that is closest to the origin (0,0). Then use geometry to check your answer. Is the slope of the line y = (v/u)x right? Write a complete sentence about your reasoning.

7. (35 points) Consider the table of values given for the functions f, f', g, and g':

$x \mid$	f(x)	$\int f'(x)$	g(x)	g'(x)
0	2	1	3	2
1	4	6	2	5
2	6	4	3	4
3	1	2	5	3
4	3	5	2	6
5	5	3	4	1
6	0	3	2	4

- (a) Let $L(x) = (f(x) + g(x))^2$. Compute L'(2).
- (b) Let $U(x) = f \circ f \circ f(x)$. Compute U'(1).
- (c) Let $K(x) = g(x) + f(x^2)$. Compute K'(2)
- (d) Let $Z(x) = f(x) \div g(x)$. Compute Z'(3).
- (e) Let $Q(x) = g(3x) \cdot f(2x)$. Compute Q'(2).