November 4, $2010 \quad$ Name
The problems count as marked. The total number of points available is 145 . Throughout this test, show your work.

1. (10 points) Suppose f and g are functions for which both $\lim _{x \rightarrow a} f(x)=0$ and $\lim _{x \rightarrow a} g(x)=0$. Which of the following is true? Circle your answer.
(A) $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=0$
(B) $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ does not exist
(C) $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\infty$
(D) $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ can be any real number
(E) $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=1$
2. (20 points) Let $f(x)=\sqrt{x^{4}-3 x+11}$.
(a) Compute $f^{\prime}(x)$
(b) What is $f^{\prime}(1)$?
(c) Use the information in (b) to find an equation for the line tangent to the graph of f at the point $(1, f(1))$.
3. (20 points) Use calculus to find all relative max and min and also all asymptotes of the function $g(x)=4 x+16 / x$.

Then, use calculus to discuss the concavity of $g(x)$.
4. (20 points) Let

$$
H(x)=(2 x+1)^{2}(3 x-4)^{2} .
$$

(a) For what values of x is the line tangent to the graph of $H(x)$ parallel to the line $y=7$?
(b) Find the intervals over which $H(x)$ is increasing.
5. (20 points) Find the symbolic representation of the function G whose graph is show below.

As a hint, the function needs six clauses, as shown.

$$
G(x)= \begin{cases} & \text { if }-2 \leq x<-1 \\ & \text { if } x=-1 \\ & \text { if }-1<x<1 \\ & \text { if } x=1 \\ \text { if } 1<x<2 \\ & \text { if } 2 \leq x \leq 4\end{cases}
$$

6. (20 points) Use calculus to find the point $P=(u, v)$ on the line $2 x+3 y=7$ that is closest to the origin $(0,0)$. Then use geometry to check your answer. Is the slope of the line $y=(v / u) x$ right? Write a complete sentence about your reasoning.
7. (35 points) Consider the table of values given for the functions f, f^{\prime}, g, and g^{\prime} :

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
0	2	1	3	2
1	4	6	2	5
2	6	4	3	4
3	1	2	5	3
4	3	5	2	6
5	5	3	4	1
6	0	3	2	4

(a) Let $L(x)=(f(x)+g(x))^{2}$. Compute $L^{\prime}(2)$.
(b) Let $U(x)=f \circ f \circ f(x)$. Compute $U^{\prime}(1)$.
(c) Let $K(x)=g(x)+f\left(x^{2}\right)$. Compute $K^{\prime}(2)$
(d) Let $Z(x)=f(x) \div g(x)$. Compute $Z^{\prime}(3)$.
(e) Let $Q(x)=g(3 x) \cdot f(2 x)$. Compute $Q^{\prime}(2)$.

