November 5, $2009 \quad$ Name
The problems count as marked. The total number of points available is 155 . Throughout this test, show your work.

1. (25 points) Let $f(x)=3 x^{4}+4 x^{3}-72 x^{2}+2$.
(a) Find the intervals over which f is increasing.

Solution: First note that $f^{\prime}(x)=12 x^{3}+12 x^{2}-144 x$, which factors into $12 x(x+4)(x-3)$, so we can build the sign chart for f^{\prime} using the branch points $0,-4$ and 3 . Doing this yields the result that f^{\prime} is positive over each of the intervals $(-4,0)$ and $(3, \infty)$. Therefore f is increasing over these two intervals.
(b) Find $f(0)$ and use this together with your answer to part (a) to sketch the graph of f.
Solution: First note that $f(0)=2$. Since $f^{\prime}(x)=12 x^{3}+12 x^{2}-144 x$, it follows that $f^{\prime}(0)=0$.
(c) Find $f^{\prime}(0)$ and use this with the information in part (b) to find an equation for the line tangent to the graph of f at the point $(0, f(0))$.
Solution: Since $f(0)=2$, the tangent line is just $y-2=0(x-0)=0$ or $y=2$.
2. (20 points) Suppose the function g has been differentiated twice to get $g^{\prime \prime}(x)=$ $(x-4)(x+1)(2 x+9)$.
(a) Construct the sign chart for $g^{\prime \prime}$.

Solution: Note that $g^{\prime \prime}$ is positive on $(-9 / 2,-1)$ and on $(4, \infty)$.
(b) Find the intervals over which the function g is concave upwards.

Solution: Same as above.
3. (20 points) Let $f(x)=\left(x^{2}-4\right)^{2 / 3}$. Find $f^{\prime}(x)$. Find all the critical points and identify each one as the location of a relative Maximum, a relative minimum, or neither (an imposter).
Solution: $f^{\prime}(x)=2\left(x^{2}-4\right)^{-1 / 3} \cdot 2 x / 3$, which has $x=0$ as a zero and $x= \pm 2$ as points of undefinedness. Therefore $x=0$ is a stationary point and $x= \pm 2$ are singular critical points.
4. (20 points) Compute the following derivatives.
(a) Let $r(x)=\left(x^{2}-x\right) \cdot e^{2 x-3}$. Find $\frac{d}{d x} r(x)$. Recall that $\frac{d}{d x} e^{f(x)}=f^{\prime}(x) e^{f(x)}$.

Solution: We differentiate it using the power rule and chain rule: $r^{\prime}(x)=$ $(2 x-1) e^{2 x-3}+2 e^{2 x-3}\left(x^{2}-x\right)$.
(b) Use the fact that $e^{x} \neq 0$ for all x to find the critical points of the function r in part (a).
Solution: After factoring, $r^{\prime}(x)=e^{2 x-3}\left[2 x-1+2\left(x^{2}-x\right)\right]=e^{2 x-3}[-1+$ $\left.2 x^{2}\right]$, which is zero precisely when $x= \pm \sqrt{1 / 2}$.
(c) Let $k(x)=\sqrt{x^{3}-6 x^{2}+5 x-x^{-1}}$. What is $k^{\prime}(x)$?

Solution: Use the chain rule to get $k^{\prime}(x)=\left(x^{3}-6 x^{2}+5 x-x^{-1}\right)^{-1 / 2}$. $\left(3 x^{2}-12 x+5+x^{-2}\right) / 2$.
(d) Let $g(x)=\frac{2 x^{3}+1}{3 x-2}$. Find $g^{\prime}(x)$.

Solution: By the quotient rule, $\frac{d}{d x} \frac{2 x^{3}+1}{3 x-2}=\frac{6 x^{2}(3 x-2)-3\left(2 x^{3}+1\right)}{(3 x-2)^{2}}$. This expression simplifies to one with a numerator $12 x^{3}-12 x^{2}-3$.
5. (20 points) Find a rational function $r(x)$ that has all the following properties:

- It has exactly two zeros, $x=-2$ and $x=3$.
- It has two vertical asymptotes, $x=0$ and $x=-3$.
- It has $y=2$ as a horizontal asymptote.
(a) Sketch the graph of your $r(x)$.

Solution:

Sadly, you cannot see the little curly part in the upper left corner.
(b) Find a symbolic representation of r.

Solution: There are a few ways to do this. The easiest is to make the numerator $2(x+2)(x-3)$ and the denominator $x(x+3)$. The graph is shown above. So

$$
r(x)=\frac{2(x+2)(x-3)}{x(x+3)}
$$

6. (20 points) A baseball team plays in he stadium that holds 60000 spectators. With the ticket price at 12 dollars the average attendance has been 25000 . When the price dropped to 10 dollars, the average attendance rose to 40000 .
(a) Find the demand function $p(x)$, where x is the number of the spectators and $p(x)$ is measured in dollars, assuming it is linear. In other words, if the relationship between the price and number of tickets sold is linear, find the price when x tickets are sold.
Solution: We need to find the linear demand function, given that $(25000,12)$ and $(40000,10)$ are on the graph. To simplify, we measure the attendance in thousands, so the two points are $(25,12)$ and $(40,10)$. Thus the slope is $m=\frac{12-10}{25-40}=-\frac{2}{15}$. Using the point-slope form of a line, we have $p(x)-10=-2 / 15(x-40)$. Simplifying yields $p(x)=(-2 x+230) / 15$.
(b) How should the ticket price be set to maximize revenue?

Solution: Now the revenue function $R(x)$ is the product of number of tickets sold and the price per ticket. Thus $R(x)=x p(x)=x(-2 x+$ $230) / 15 . R^{\prime}(x)=(-4 x+230) / 15$, which has a zero at $x=230 / 4=57.50$. What this says is that the optimum attendance is $57.50 \cdot 1000=57500$ and that corresponds to a ticket price of $23 / 3$ dollars.
7. (10 points) Sketch the graph of the function

$$
f(x)=\frac{|x-1|}{x-1}+\frac{|x+3|}{x+3} .
$$

Solution: We must eliminate precisely the values $x=1$ and $x=-3$, so the set is $(-\infty,-3) \cup(-3,1) \cup(1, \infty)$.
8. (20 points) A rancher wants to fence in an area of 10 square miles in a rectangular field and then divide it in half with a fence down the middle parallel to one side. What is the shortest length of fence that the rancher can use?
Solution: About 16 miles of fencing is needed. See the diagram below. Note that the total amount of fencing needed, based on the labeling of the figure is $3 y+4 x$ and the area fenced in is $A=10=2 x y$. Solve the last relation for y to get $y=5 / x$. Now the amount of fencing f can be written in terms of x as follows: $f(x)=3(5 / x)+4 x, 0<x$. Find the critical points of f by first noting that $f^{\prime}(x)=15(-1) x^{-2}+4$. Then solve $f^{\prime}(x)=0$ to get $x=\sqrt{15} / 2$. The sign chart for f^{\prime} shows that f has a minimum at $\sqrt{15} / 2$. The rancher needs $f(\sqrt{15} / 2)=4 \sqrt{15} \approx 15.49$ miles of fencing.

