November 5, 2009
Name
The problems count as marked. The total number of points available is 155. Throughout this test, show your work.

1. (25 points) Let $f(x)=3 x^{4}+4 x^{3}-72 x^{2}+2$.
(a) Find the intervals over which f is increasing.
(b) Find $f(0)$ and use this together with your answer to part (a) to sketch the graph of f.
(c) Find $f^{\prime}(0)$ and use this with the information in part (b) to find an equation for the line tangent to the graph of f at the point $(0, f(0))$.
2. (20 points) Suppose the function g has been differentiated twice to get $g^{\prime \prime}(x)=$ $(x-4)(x+1)(2 x+9)$.
(a) Construct the sign chart for $g^{\prime \prime}$.
(b) Find the intervals over which the function g is concave upwards.
3. (20 points) Let $f(x)=\left(x^{2}-4\right)^{2 / 3}$. Find $f^{\prime}(x)$. Find all the critical points and identify each one as the location of a relative Maximum, a relative minimum, or neither (an imposter).
4. (20 points) Compute the following derivatives.
(a) Let $r(x)=\left(x^{2}-x\right) \cdot e^{2 x-3}$. Find $\frac{d}{d x} r(x)$. Recall that $\frac{d}{d x} e^{f(x)}=f^{\prime}(x) e^{f(x)}$.
(b) Use the fact that $e^{x} \neq 0$ for all x to find the critical points of the function r in part (a).
(c) Let $k(x)=\sqrt{x^{3}-6 x^{2}+5 x-x^{-1}}$. What is $k^{\prime}(x)$?
(d) Let $g(x)=\frac{2 x^{3}+1}{3 x-2}$. Find $g^{\prime}(x)$.
5. (20 points) Find a rational function $r(x)$ that has all the following properties:

- It has exactly two zeros, $x=-2$ and $x=3$.
- It has two vertical asymptotes, $x=0$ and $x=-3$.
- It has $y=2$ as a horizontal asymptote.
(a) Sketch the graph of your $r(x)$.

(b) Find a symbolic representation of r.

6. (20 points) A baseball team plays in he stadium that holds 60000 spectators. With the ticket price at 12 dollars the average attendance has been 25000 . When the price dropped to 10 dollars, the average attendance rose to 40000 .
(a) Find the demand function $p(x)$, where x is the number of the spectators and $p(x)$ is measured in dollars, assuming it is linear. In other words, if the relationship between the price and number of tickets sold is linear, find the price when x tickets are sold.
(b) How should the ticket price be set to maximize revenue?
7. (10 points) Sketch the graph of the function

$$
f(x)=\frac{|x-1|}{x-1}+\frac{|x+3|}{x+3} .
$$

8. (20 points) A rancher wants to fence in an area of 10 square miles in a rectangular field and then divide it in half with a fence down the middle parallel to one side. What is the shortest length of fence that the rancher can use?

