March 5, 2009
Name
The problems count as marked. The total number of points available is 131. Throughout this test, show your work.

1. (12 points) Consider the cubic curve $f(x)=2 x^{3}+3 x+2$.
(a) What is the slope of the line tangent to the graph of f at the point $(0,2)$?

Solution: $f^{\prime}(x)=6 x^{2}+3$ so $f^{\prime}(0)=3$. The slope of the tangent line is 3.
(b) Write an equation of this tangent line in the form $y=m x+b$.

Solution: Since the slope is 2 , we can use the point slope form to get $y-2=3(x-0)=3 x$, so $y=3 x+2$.
2. (10 points) Suppose f is a function satisfying $f(2)=3$ and $f^{\prime}(2)=-1$. What is the y-intercept of the line tangent to the graph of f at the point $(2,3)$?
Solution: The tangent line is given by $y-3=-1(x-2)$, which is the same line as $y=-x+5$, so the y-intercept is 5 .
3. (15 points) For what values of x is the line tangent to the graph of

$$
f(x)=(2 x+1)^{2}(3 x-4)^{2}
$$

parallel to the line $y=7$?
Solution: Since $f^{\prime}(x)=2(2 x+1) \cdot 2 \cdot(3 x-4)^{2}+2(3 x-4) \cdot 3 \cdot(2 x+1)^{2}$, we seek those values of x such that $2(2 x+1)(3 x-4)[2(3 x-4)+3(2 x+1)]=0$. Factoring and simplifying yields $x=-1 / 2, x=4 / 3$ and $6 x-8+6 x+3=0$, so the three values of are $x=-1 / 2, x=4 / 3$ and $x=5 / 12$.
4. (20 points) If a ball is thrown vertically upward from the roof of 256 foot building with a velocity of $64 \mathrm{ft} / \mathrm{sec}$, its height after t seconds is $s(t)=256+$ $64 t-16 t^{2}$.
(a) What is the height the ball at time $t=1$?

Solution: $s(1)=256+64-16=304$.
(b) What is the velocity of the ball at the time it reaches its maximum height?
Solution: $s^{\prime}(t)=v(t)=0$ when the ball reaches its max height.
(c) At what time t does the ball reach its maximum height?

Solution: Solve $s^{\prime}(t)=64-32 t=0$ to get $t=2$ when the ball reaches its zenith.
(d) What is the maximum height the ball reaches?

Solution: Solve $s^{\prime}(t)=64-32 t=0$ to get $t=2$ when the ball reaches its zenith. Thus, the max height is $s(2)=256+64(2)-16(2)^{2}=320$.
(e) After how many seconds is the ball exactly 176 feet above the ground?

Solution: Use the quadratic formula to solve $256+64 t-16 t^{2}=176$. You get $-16 t^{2}+64 t+80=0$. The left side can be factored to get solutions $x=-1$ (nonsense) and $x=5$ (yes!).
(f) The second derivative $s^{\prime \prime}(t)$ of the position function, also called the $a c$ celeration function, is denoted $a(t)$. Compute $a(t)$. Explain why this function is negative for all values of t.
Solution: $a(t)=s^{\prime \prime}(t)=\frac{d}{d t} v(t)=\frac{d}{d t} 64-32 t=-32$. Its negative because the force of gravity pulls downward.
(g) How fast is the ball going the first time it reaches the height 176 ? Write the answer with the correct units.
Solution: Using the solution $t=5$ above, we find that the velocity at $t=5$ is $v(5)=64-32 \cdot 5=-96$ feet per second.
(h) How fast is the ball going when it hits the ground?

Solution: The ball hits the ground when $s(t)=0$ which, by the quadratic formula is $t=2 \pm 2 \sqrt{5}$. Of course, only the positive on of these is relevant. Now $v(2+2 \sqrt{5})=64-32(2+2 \sqrt{5})=-64 \sqrt{5} \approx-143$ feet per second. Its negative because the ball is moving downward.
5. (20 points) Let

$$
g(x)=\left(2 x^{2}-1\right)^{2}(6 x)
$$

(a) Compute $g^{\prime}(x)$.

Solution: By the product rule, $g^{\prime}(x)=2\left(2 x^{2}-1\right)(4 x) \cdot 6 x+6 \cdot\left(2 x^{2}-1\right)^{2}=$ $\left(2 x^{2}-1\right)\left[48 x^{2}+6\left(2 x^{2}-1\right)\right]$.
(b) Find the critical points of $g(x)$.

Solution: Solve $g^{\prime}(x)=0$ for the four values $x= \pm \sqrt{1 / 2} \approx \pm 0.707$ and $x= \pm \sqrt{1 / 10} \approx \pm 0.316$.
(c) Build the sign chart for $g^{\prime}(x)$.

Solution: g^{\prime} changes signs at each critical point.
(d) Use the sign chart for $g^{\prime}(x)$ to discuss the nature of each critical point. In other words tell whether each critical point is the location of a local maximum, a local minimum, or neither.
Solution: Since g^{\prime} is positive on $(-\infty,-0.707) \cup(-0.316,0.316) \cup(0.707, \infty)$, it follows that g has maximas at -0.707 and 0.316 and minimas at the other two critical points.
6. (30 points) Consider the table of values given for the functions f, f^{\prime}, g, and g^{\prime} :

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
0	2	1	3	2
1	4	6	2	5
2	6	4	3	4
3	1	2	5	3
4	3	5	2	6
5	5	3	4	1
6	0	3	2	4

(a) Let $V(x)=f(x) \cdot g(x))$. Compute $V^{\prime}(5)$.

Solution: By the product rule, $V^{\prime}(x)=f^{\prime}(x) g(x)+g^{\prime}(x) f(x)$, so $V^{\prime}(5)=$ $f^{\prime}(5) g(5)+g^{\prime}(5) f(5)=3 \cdot 4+1 \cdot 5=17$.
(b) Let $W(x)=\frac{g(x)}{f(x)}$. Compute $W^{\prime}(3)$.

Solution: By the quotient rule, $W^{\prime}(x)=\left[g^{\prime}(x) f(x)-f^{\prime}(x) g(x)\right] \div f(x)^{2}$, so $W^{\prime}(3)=[3 \cdot 1-2 \cdot 5] \div 1=-7$.
(c) Let $L(x)=f(x+1)-g(x)^{2}$. Compute $L^{\prime}(2)$.

Solution: By the chain rule, $L^{\prime}(x)=\left(f^{\prime}(x+1)-2 g(x) g^{\prime}(x)\right.$, so $L^{\prime}(2)=$ $\left(f^{\prime}(2+1)-2 g(2) g^{\prime}(2)=2-2 \cdot 3 \cdot 4=-22\right.$.
(d) Let $U(x)=(f \circ g)(2 x+1)$. Notice that this is a composition of three functions. Compute $U^{\prime}(1)$.
Solution: By the chain rule, $U^{\prime}(x)=f^{\prime}(g(2 x+1)) \cdot 2$, so $U^{\prime}(1)=$ $f^{\prime}(g(3)) \cdot g^{\prime}(3) \cdot 2=3 \cdot 3 \cdot 2=18$.
(e) Let $K(x)=g\left(x^{3}+2\right)$. Compute $K^{\prime}(1)$

Solution: $K^{\prime}(x)=g^{\prime}\left(x^{3}+2\right) \cdot 3 x^{2}$, so $K^{\prime}(1)=g^{\prime}(3) \cdot 3=3 \cdot 3=9$.
7. (24 points) Compute the following derivatives.
(a) Let $f(x)=x^{2}+x^{-\frac{2}{3}}$. Find $\frac{d}{d x} f(x)$.

Solution: $\frac{d}{d x} f(x)=2 x-2 x^{-\frac{5}{3}} / 3=2 x-\frac{2}{3 x^{\frac{5}{3}}}$.
(b) Let $g(x)=\sqrt{x^{2}+x+4}$. What is $g^{\prime}(x)$?

Solution: $g^{\prime}(x)=1 / 2\left(x^{3}+x+4\right)^{-1 / 2} \cdot\left(3 x^{2}+1\right)=\frac{3 x^{2}+1}{2 \sqrt{x^{3}+x+4}}$.
(c) Find $\frac{d}{d x}\left((3 x+1)^{2} \cdot\left(4 x^{2}-1\right)\right)$

Solution: Let $f(x)=\left((3 x+1)^{2} \cdot\left(4 x^{2}-1\right)\right)$. Then, by the product and chain rules, $f^{\prime}(x)=2(3 x+1) \cdot 3\left(4 x^{2}-1\right)+8 x(3 x+1)^{2}=(3 x+1)\left(48 x^{2}+\right.$ $8 x-6)$.
(d) Find $\frac{d}{d t} \frac{2 t^{2}-3 t}{t^{2}-1}$

Solution: Use the quotient rule to get $\frac{d}{d t} \frac{2 t^{2}-3 t}{t^{2}-t}=\frac{(4 t-3)\left(t^{2}-t\right)-(2 t-1)\left(2 t^{2}-3 t\right)}{\left(t^{2}-t\right)^{2}}$. Expanding and collecting like terms gives $\frac{t^{2}}{t^{2}(t-1)^{2}}=\frac{1}{(t-1)^{2}}$. The simple nature of the answer makes us have a look at the original function. Notice that t is a factor of both numerator and denominator. So why not just eliminate the t 's in the function and find the derivative of $\frac{2 t-3}{t-1}$. Indeed, differentiating this function is much easier.

