November 5, $2008 \quad$ Name
The total number of points available is 139. Throughout this test, show your work.

1. (15 points) Consider the function $f(x)=(2 x+3)^{2}(x-1)^{2}$.
(a) Use the product rule to find $f^{\prime}(x)$.

Solution: $f^{\prime}(x)=2(2 x+3) 2(x-1)^{2}+2(x-1)(2 x+3)^{2}$
(b) List the critical points of f.

Solution: Factor the expression above to get $2(2 x+3)(x-1)[2(x-1)+$ $2 x+3=2(2 x+3)(x-1)(4 x+1)$, which has value 0 when $x=-3 / 2,1,-1 / 4$
(c) Construct the sign chart for $f^{\prime}(x)$.

Solution: f^{\prime} is positive on $(-3 / 2,-1 / 4)$ and on $(1, \infty)$.
(d) Write in interval notation the interval(s) over which f is increasing.

Solution: f is increasing on $(-3 / 2,-1 / 4)$ and on $(1, \infty)$
2. (15 points) Consider the function $f(x)=\frac{(2 x+3)}{(x-1)^{2}}$.
(a) Use the quotient rule to find both $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.

Solution: By the quotient rule $f^{\prime}(x)=\frac{2(x-1)^{2}-2(x-1)(2 x+3)}{(x-1)^{4}}$ which can be factored to get $f^{\prime}(x)=\frac{2(x-1)[x-1-(2 x+3)]}{(x-1)^{4}}=\frac{-2 x-8}{(x-1)^{3}}$
(b) Construct the sign chart for $f^{\prime \prime}(x)$.

Solution: By the quotient rule $f^{\prime \prime}(x)=\frac{-2(x-1)^{3}-3(x-1)^{2}(-2 x-8)}{(x-1)^{6}}=\frac{4 x+26}{(x-1)^{4}}$, so there is just one zero, $x=-6.5$ and one undefined spot, $x=1$.
(c) Write in interval notation the interval(s) over which f is concave upwards.
Solution: After building the sign chart for $f^{\prime \prime}$, we see that $f^{\prime \prime}$ is positive on $(-6.5,1)$ and $(1, \infty)$.
3. (15 points) Consider the function $f(x)=\frac{(2 x+3)(x-3)}{x(x-1)}$.
(a) Build the sign chart for f

Solution: We have to use all the points where f could change signs, $x=-3 / 2,3,0$, and 1 . As expected the signs alternate starting with + at the far left:+ -+-+ .
(b) Find the vertical and horizontal asymptotes.

Solution: The vertical asymptotes are $x=0$ and $x=1$, and the horizontal asymptote is $y=2$.
(c) Use the information from the first two parts to sketch the graph of f.
4. (10 points) If 1400 square centimeters of material is available to make a box with a square base and an open top, find the largest possible volume of the box.
Solution: Use $x^{2}+4 x y=1400$ to find y in terms of x. Then $V(x)=$ $x \cdot \frac{1400-x^{2}}{4}$ after cancelling a pair of x 's. Differentiate and set v^{\prime} to zero to get $\bar{x}=\sqrt{1400 / 3}$ and finally $V(\bar{x})=700 / 3 \cdot \sqrt{1400 / 3}$
5. (12 points) A baseball team plays in he stadium that holds 56000 spectators. With the ticket price at $\$ 9$ the average attendance has been 23000 . When the price dropped to $\$ 8$, the average attendance rose to 28000 . If $p(x)$ represents the price, in dollars, which will attract x spectators,
(a) Find the demand function $p(x)$, where x is the number of the spectators. Assume $p(x)$ is linear.
Solution: We have two points on the linear function $p(23000)=9$ and $p(28000)=8$. The slope is $m=\frac{9-8}{23000-28000}=-\frac{1}{5000}$. Using the point slope form, we get $p(x)-9=-\frac{1}{5000}(x-23000)$. Thus, $p(x)=-\frac{1}{5000}(x-$ $23000)+9=-\frac{x}{5000}+\frac{23}{5} \cdot 9$.
(b) How should be set a ticket price to maximize revenue?

Solution: The revenue function is the product of x and $p(x)$. Thus $R(x)=x p(x)=-\frac{x^{2}}{5000}+\frac{68 x}{5}$. Differentiating, we get $R^{\prime}(x)=-2 x / 5000+$ $68 / 5$. Thus R has just one critical point, $x=\frac{68000}{2}=34000$ spectators.
6. (6 points) The line $y=3 x-5$ is tangent to the graph of the function f at the point $(2,1)$. What is $f^{\prime}(2)$?

Solution: $f^{\prime}(2)=3$, the slope of the tangent line.
7. (12 points) For what values of x is the tangent line of the graph of

$$
f(x)=2 x^{3}-15 x^{2}-72 x+12
$$

parallel to the line $y=12 x-17$?
Solution: Since $f^{\prime}(x)=6 x^{2}-30 x-72=6\left(x^{2}-5 x-12\right)$, we seek those values of x such that $6\left(x^{2}-5 x-12\right)=12$. Factoring and simplifying yields $x^{2}-5 x-12-2=x^{2}-5 x-14=0$ and $(x-7)(x+2)=0$, so the two values of are $x=7$ and $x=-2$.
8. (12 points) Consider the function $f(x)=x^{3}-5.5 x^{2}-4 x+7, \quad-5 \leq x \leq 5$. Find the locations of the absolute maximum of $f(x)$ and the absolute minimum of $f(x)$ and the value of f at these points.

Solution: Since $f^{\prime}(x)=3 x^{2}-11 x-4=(3 x+1)(x-4)=0$ we have the two critical points $x=-1 / 3$ and $x=4$. The other two candidates for extrema are the endpoints, -5 and 5 . Checking functional values, we have $f(-5)=-235.5, f(-1 / 3) \approx 7.685, f(5)=-25.5$ and $f(4)=-33$. So f has an absolute maximum of about 7.685 at $x=-1 / 3$ and an absolute minimum of -235.5 at $x=-5$.
9. (12 points) For each function listed below, find all the critical points. Tell whether each critical point gives rise to a local maximum, a local minimum, or neither.
(a) $f(x)=\left(x^{3}-8\right)^{2}$

Solution: $f^{\prime}(x)=2\left(x^{3}-8\right) \cdot 3 x^{2}$, so the critical points are $x=2$, and $x=0$. Looking at the sign chart of f^{\prime}, we see that f^{\prime} does not change signs at $x=0$, so f does not have an extremum at 0 . But f^{\prime} changes from negative to positive at $x=2$, so f must have a minimum there.
(b) $g(x)=(x-1)^{2 / 3}$

Solution: $g^{\prime}(x)=\frac{2}{3}(x-1)^{-1 / 3}$, which means that g has a singular point at $x=1$. Since f^{\prime} is negative to the left of 1 and positive to the right, we know f has a minimum at $x=1$.
10. (15 points) Let $L(x)=3 x-4$. Of course L is a linear function. For each real number x, the point $(x, y)=(x, 3 x-4)$ belongs to the line. The point $(1,1)$ does not belong to the line.
(a) Let x denote the number of letters in your first name. Find the distance between $(1,1)$ and $(x, L(x)$.

Solution:

(b) Let x denote the number of letters in your family name. If this is the same number as in (a), add one to it. Find the distance between $(1,1)$ and ($x, L(x)$.

Solution:

(c) Find the distance function $D(x)$ that measures the distance from $(1,1)$ to ($x, L(x)$, where x is arbitrary. The first two parts are samples of function values.
Solution: $D(x)=\sqrt{(x-1)^{2}+(3 x-4-1)^{2}}=\left[(x-1)^{2}+(3 x-5)^{2}\right]^{1 / 2}$.
(d) Find the derivative $D^{\prime}(x)$.

Solution: $D^{\prime}(x)=1 / 2\left[(x-1)^{2}+(3 x-4-1)^{2}\right]^{-1 / 2} \cdot(2(x-1)+2(3 x-5))$.
(e) Differentiate the square of $D(x)$. This should be much easier to work with.
Solution: The square is $D^{2}=(x-1)^{2}+(3 x-5)^{2}$ and its derivative is $\frac{d D^{2}(x)}{d x}=2(x-1)+2(3 x-5) \cdot 3$ which is zero at $x=32 / 20=1.6$
(f) Find a critical point of the square of D. Its the same as we would get for D itself.
Solution: $x=1.6$.
(g) Find the point on the line that is closest to $(1,1)$.

Solution: The point on the line that is closest is $(1.6,0.8)$.
11. (10 points) Build a (symbolic representation of a) function f satisfying
(a) f has zeros at $x=3$ and $x=-1$.
(b) f has vertical asymptotes at $x=-4$ and $x=0$.
(c) f has $y=2$ as a horizontal asymptote.

Solution: $f(x)=\frac{2(x-3)(x+1)}{x(x+4)}$

