November 5, 2008 Name

The total number of points available is 139. Throughout this test, **show** your work.

- 1. (15 points) Consider the function $f(x) = (2x+3)^2(x-1)^2$.
 - (a) Use the product rule to find f'(x).

Solution: $f'(x) = 2(2x+3)2(x-1)^2 + 2(x-1)(2x+3)^2$

(b) List the critical points of f.

Solution: Factor the expression above to get 2(2x+3)(x-1)[2(x-1)+2x+3=2(2x+3)(x-1)(4x+1), which has value 0 when x=-3/2,1,-1/4

(c) Construct the sign chart for f'(x).

Solution: f' is positive on (-3/2, -1/4) and on $(1, \infty)$.

(d) Write in interval notation the interval(s) over which f is increasing.

Solution: f is increasing on (-3/2, -1/4) and on $(1, \infty)$

- 2. (15 points) Consider the function $f(x) = \frac{(2x+3)}{(x-1)^2}$.
 - (a) Use the quotient rule to find both f'(x) and f''(x).

Solution: By the quotient rule $f'(x) = \frac{2(x-1)^2 - 2(x-1)(2x+3)}{(x-1)^4}$ which can be factored to get $f'(x) = \frac{2(x-1)[x-1-(2x+3)]}{(x-1)^4} = \frac{-2x-8}{(x-1)^3}$

(b) Construct the sign chart for f''(x).

Solution: By the quotient rule $f''(x) = \frac{-2(x-1)^3 - 3(x-1)^2(-2x-8)}{(x-1)^6} = \frac{4x+26}{(x-1)^4}$, so there is just one zero, x = -6.5 and one undefined spot, x = 1.

(c) Write in interval notation the interval(s) over which f is concave upwards.

Solution: After building the sign chart for f'', we see that f'' is positive on (-6.5, 1) and $(1, \infty)$.

- 3. (15 points) Consider the function $f(x) = \frac{(2x+3)(x-3)}{x(x-1)}$.
 - (a) Build the sign chart for f

Solution: We have to use all the points where f could change signs, x = -3/2, 3, 0, and 1. As expected the signs alternate starting with + at the far left:+ - + - +.

(b) Find the vertical and horizontal asymptotes.

Solution: The vertical asymptotes are x=0 and x=1, and the horizontal asymptote is y=2.

(c) Use the information from the first two parts to sketch the graph of f.

4. (10 points) If 1400 square centimeters of material is available to make a box with a square base and an open top, find the largest possible volume of the box.

Solution: Use $x^2 + 4xy = 1400$ to find y in terms of x. Then $V(x) = x \cdot \frac{1400 - x^2}{4}$ after cancelling a pair of x's. Differentiate and set v' to zero to get $\overline{x} = \sqrt{1400/3}$ and finally $V(\overline{x}) = 700/3 \cdot \sqrt{1400/3}$

- 5. (12 points) A baseball team plays in he stadium that holds 56000 spectators. With the ticket price at \$9 the average attendance has been 23000. When the price dropped to \$8, the average attendance rose to 28000. If p(x) represents the price, in dollars, which will attract x spectators,
 - (a) Find the demand function p(x), where x is the number of the spectators. Assume p(x) is linear.

Solution: We have two points on the linear function p(23000) = 9 and p(28000) = 8. The slope is $m = \frac{9-8}{23000-28000} = -\frac{1}{5000}$. Using the point slope form, we get $p(x) - 9 = -\frac{1}{5000}(x - 23000)$. Thus, $p(x) = -\frac{1}{5000}(x - 23000) + 9 = -\frac{x}{5000} + \frac{23}{5} \cdot 9$.

(b) How should be set a ticket price to maximize revenue?

Solution: The revenue function is the product of x and p(x). Thus $R(x) = xp(x) = -\frac{x^2}{5000} + \frac{68x}{5}$. Differentiating, we get R'(x) = -2x/5000 + 68/5. Thus R has just one critical point, $x = \frac{68000}{2} = 34000$ spectators.

6. (6 points) The line y = 3x - 5 is tangent to the graph of the function f at the point (2, 1). What is f'(2)?

Solution: f'(2) = 3, the slope of the tangent line.

7. (12 points) For what values of x is the tangent line of the graph of

$$f(x) = 2x^3 - 15x^2 - 72x + 12$$

parallel to the line y = 12x - 17?

Solution: Since $f'(x) = 6x^2 - 30x - 72 = 6(x^2 - 5x - 12)$, we seek those values of x such that $6(x^2 - 5x - 12) = 12$. Factoring and simplifying yields $x^2 - 5x - 12 - 2 = x^2 - 5x - 14 = 0$ and (x - 7)(x + 2) = 0, so the two values of are x = 7 and x = -2.

8. (12 points) Consider the function $f(x) = x^3 - 5.5x^2 - 4x + 7$, $-5 \le x \le 5$. Find the locations of the absolute maximum of f(x) and the absolute minimum of f(x) and the value of f(x) are these points.

Solution: Since $f'(x) = 3x^2 - 11x - 4 = (3x + 1)(x - 4) = 0$ we have the two critical points x = -1/3 and x = 4. The other two candidates for extrema are the endpoints, -5 and 5. Checking functional values, we have f(-5) = -235.5, $f(-1/3) \approx 7.685$, f(5) = -25.5 and f(4) = -33. So f has an absolute maximum of about 7.685 at x = -1/3 and an absolute minimum of -235.5 at x = -5.

- 9. (12 points) For each function listed below, find all the critical points. Tell whether each critical point gives rise to a local maximum, a local minimum, or neither.
 - (a) $f(x) = (x^3 8)^2$

Solution: $f'(x) = 2(x^3 - 8) \cdot 3x^2$, so the critical points are x = 2, and x = 0. Looking at the sign chart of f', we see that f' does not change signs at x = 0, so f does not have an extremum at 0. But f' changes from negative to positive at x = 2, so f must have a minimum there.

(b) $g(x) = (x-1)^{2/3}$

Solution: $g'(x) = \frac{2}{3}(x-1)^{-1/3}$, which means that g has a singular point at x = 1. Since f' is negative to the left of 1 and positive to the right, we know f has a minimum at x = 1.

- 10. (15 points) Let L(x) = 3x 4. Of course L is a linear function. For each real number x, the point (x, y) = (x, 3x 4) belongs to the line. The point (1, 1) does not belong to the line.
 - (a) Let x denote the number of letters in your first name. Find the distance between (1,1) and (x,L(x)).

Solution:

(b) Let x denote the number of letters in your family name. If this is the same number as in (a), add one to it. Find the distance between (1,1) and (x, L(x)).

Solution:

(c) Find the distance function D(x) that measures the distance from (1,1) to (x, L(x)), where x is arbitrary. The first two parts are samples of function values.

Solution: $D(x) = \sqrt{(x-1)^2 + (3x-4-1)^2} = [(x-1)^2 + (3x-5)^2]^{1/2}$.

(d) Find the derivative D'(x).

Solution: $D'(x) = 1/2[(x-1)^2 + (3x-4-1)^2]^{-1/2} \cdot (2(x-1) + 2(3x-5)).$

(e) Differentiate the square of D(x). This should be much easier to work with.

Solution: The square is $D^2 = (x-1)^2 + (3x-5)^2$ and its derivative is $\frac{dD^2(x)}{dx} = 2(x-1) + 2(3x-5) \cdot 3$ which is zero at x = 32/20 = 1.6

(f) Find a critical point of the square of D. Its the same as we would get for D itself.

Solution: x = 1.6.

(g) Find the point on the line that is closest to (1,1).

Solution: The point on the line that is closest is (1.6, 0.8).

- 11. (10 points) Build a (symbolic representation of a) function f satisfying
 - (a) f has zeros at x = 3 and x = -1.
 - (b) f has vertical asymptotes at x = -4 and x = 0.
 - (c) f has y = 2 as a horizontal asymptote.

Solution: $f(x) = \frac{2(x-3)(x+1)}{x(x+4)}$