February 28, 2008 Name

The total number of points available is 137. Throughout this test, **show your work**.

- 1. (15 points) Let $f(x) = \sqrt{x^4 3x + 11}$.
 - (a) Compute f'(x)Solution: $f'(x) = \frac{1}{2}(x^4 - 3x + 11)^{-1/2}(4x^3 - 3) = \frac{4x^3 - 3}{2\sqrt{x^4 - 3x + 11}}$.
 - (b) What is f'(1)? Solution: $f'(1) = \frac{4-3}{2\sqrt{1-3+11}} = 1/6$
 - (c) Use the information in (b) to find an equation for the line tangent to the graph of f at the point (1, f(1)).
 Solution: Since f(1) = 2, using the point-slope form leads to y 3 = f'(1)(x 1) = (x 1)/6, so y = x/6 + 17/6.
- 2. (15 points) For what values of x is the line tangent to the graph of

$$f(x) = (2x+1)^2(3x-4)^2$$

parallel to the line y = 7?

Solution: Since $f'(x) = 2(2x+1) \cdot 2 \cdot (3x-4)^2 + 2(3x-4) \cdot 3 \cdot (2x+1)^2$, we seek those values of x such that 2(2x+1)(3x-4)[2(3x-4)+3(2x+1)] = 0. Factoring and simplifying yields x = -1/2, x = 4/3 and 6x - 8 + 6x + 3 = 0, so the three values of are x = -1/2, x = 4/3 and x = 5/12.

- 3. (32 points) The cost of producing widgets is given by $C(x) = 10000 + 50x 0.003x^2$, $0 \le x \le 1000$. The relationship between price and demand for widgets is given by p = f(x) = -0.04x + 300, $0 \le x \le 7000$, where p is the price in dollars.
 - (a) Find the average cost function $\overline{C}(x)$. Solution: $\overline{C}(x) = 10000/x + 50 - 0.003x$.
 - (b) Find the (incremental) cost of producing the 500th widget. **Solution:** $C(500) - C(499) = 10000 + 50 \cdot 500 - 0.001 \cdot 500^2 - (10000 + 50 \cdot 499 - 0.001 \cdot 499^2) = 50 - 0.003(999) = 47.003.$
 - (c) Find the marginal cost function C'(x). Solution: C'(x) = 50 - 0.006x.
 - (d) What is C'(500)? Solution: C'(500) = 50 - 0.006(500) = 47.
 - (e) Find the marginal average cost function $\overline{C}'(x)$. Solution: $\overline{C}'(x) = -10000/x^2 - 0.003$.
 - (f) Find the revenue function R(x). Solution: $R(x) = xp = xf(x) = x(-0.2x + 300) = -.04x^2 + 300x$.
 - (g) Find the marginal revenue function R'(x). Solution: R'(x) = -0.08x + 300.
 - (h) Find the profit function P(x). Solution: $P(x) = R(x) - C(x) = 250x - 0.037x^2 - 10000$.
 - (i) Find the marginal profit function P'(x). Solution: P'(x) = 250 - 0.074x.
 - (j) Find a value of x where the profit function P(x) has a horizontal tangent line.

Solution: Solve P'(x) = 0 for x to get $x = 250 \div 0.074 \approx 3378$.

- 4. (20 points) Compute the following derivatives.
 - (a) Let $f(x) = (1 + \sqrt{1 + x^2})^2$. Find $\frac{d}{dx}f(x)$. **Solution:** Note that $f'(x) = 2(1 + \sqrt{1 + x^2}) \cdot 1/2(1 + x^2)^{-1/2} \cdot (2x) = 2x(1 + \sqrt{1 + x^2}) \div \sqrt{1 + x^2}$.
 - (b) Find $\frac{d}{dt}(t^{-3} \sqrt{t^3})$. **Solution:** By the chain rule, $\frac{d}{dt}\frac{d}{dt}(t^{-2} - t^{2/3}) = -3t^{-4} - \frac{3}{2}t^{1/2}$.
 - (c) Let $g(x) = x^2/(1+x^2)$. What is g'(x)? **Solution:** Use the quotient rule to get $g'(x) = 2x(1+x^2) - 2x(x^2) \div (1+x^2)^2 = \frac{2x}{(1+x^2)^2}$.
 - (d) Find $\frac{d}{dx}\sqrt{\frac{2x^2+1}{3x+2}}$.

Solution: By the chain and quotient rules, $\frac{d}{dx}\frac{2x^3+1}{x-2} = \left(\frac{2x^2+1}{3x+2}\right)^{-1/2}$. $\frac{6x^2+8x-3}{2(3x+2)^2}$. 5. (20 points) Find the domain of the function

$$f(x) = \sqrt{\frac{(x-2)(x+2)(3x-1)}{(3x^2-27)(x-2)}}.$$

Express your answer in interval form.

Solution: Notice first that f is not in factored form. Factoring reveals that the numerator and denominator have common factors. Thus

$$r(x) = \frac{(x-2)(x+2)(3x-1)}{3(x^2-9)(x-2)}.$$

We can cancel the common factors with the understanding that we are (very slightly) enlarging the domain of r: $r(x) = \frac{(x+2)(3x-1)}{3(x-3)(x+3)}$. Next find the branch points. These are the points at which f can change signs. Precisely, they are the zeros of the numerator and of the denominator. They are -3, -2, 1/3, 3. Again we select test points and find the sign of f at of these points to get the sign chart. Again suppose that we are solving $f(x) \ge 0$ The solution to f(x) > 0 is easy. It is the union of the open intervals with the + signs, $(-\infty, -3) \cup (-2, 1/3) \cup (3, \infty)$. It remains to solve f(x) = 0 and attach these solutions to what we have. The zeros of f are -4 and 1/3. So the solution to $f(x) \ge 0$ is $(-\infty, -3] \cup [-2, 1/3] \cup (3, \infty)$.

6. (35 points) Consider the table of values given for the functions f, f', g, and g':

$x \mid$	$\int f(x)$	f'(x)	g(x)	g'(x)
0	2	1	3	2
1	4	6	2	5
2	6	4	3	4
3	1	2	5	3
4	3	5	2	6
5	5	3	4	1
6	0	3	2	4

- (a) Let $L(x) = \frac{x+f(x)}{g(x)}$. Compute L'(2). **Solution:** $L'(x) = (1 + f'(x)g(x) - g'(x)(x + f(x)) \div g(x)^2$, so $L'(2) = (1 + f'(2)g(2) - g'(2)(2 + f(2)) \div g(2)^2 = (1 + 4) \cdot 3 - 4 \cdot (2 + 6) \div 9 = -17/9$.
- (b) Let $U(x) = f \circ f(2x)$. Compute U'(1). **Solution:** By the chain rule, $U'(x) = 2f'(f(x)) \cdot f'(2x)$, so $U'(1) = 2f'(f(2)) \cdot f'(2) = 2f'(6) \cdot f'(2) = 2 \cdot 3 \cdot 4 = 24$.
- (c) Let $K(x) = g(x^3) + f(x)$. Compute K'(1)Solution: $K'(x) = g'(x^3) \cdot 3x^2 + f'(x)$, so $K'(1) = g'(1) \cdot 3 + f'(1) = 5 \cdot 3 + 6 = 21$.
- (d) Let Z(x) = g(2x f(x)). Compute Z'(3). Be careful here with the parens. Note that the inside function is 2x f(x). **Solution:** Again by the chain rule and the product rule, $Z'(x) = g'(2x - f(x)) \cdot (2 - f'(x))$ so $Z'(3) = g'(6 - f(3)) \cdot (2 - f'(3)) = g'(5)(2 - 2) = 0$.
- (e) Let $Q(x) = g(2x) \cdot f(3x)$. Compute Q'(2). **Solution:** Again by the product rule and chain rule, $Q'(x) = 2g'(2x) \cdot f(3x) + 3f'(3x) \cdot g(2x)$ so $Q'(1) = 2g'(2 \cdot 2) \cdot f(3 \cdot 2) + 3f'(3 \cdot 2) \cdot g(2 \cdot 2) = 2g'(4) \cdot f(6) + 3f'(6) \cdot g(4) = 2 \cdot 6 \cdot 0 + 3 \cdot 3 \cdot 2 = 18$.
- (f) Let V(x) = f(2 + g(x 2)). Compute V'(2). **Solution:** Again, by the chain rule, $V'(x) = f'(2 + g(x - 2)) \cdot g'(x - 2)$, so $V'(2) = f'(g(0)) \cdot g'(0) = f'(5) \cdot g'(0) = 3 \cdot 2 = 6$.
- (g) Let W(x) = g(x f(x)). Compute W'(5). **Solution:** Again by the chain rule, $W'(x) = g'(x - f(x)) \cdot (1 - f'(x))$, so $W'(5) = g'(5 - f(5)) \cdot (1 - f'(5)) = 2 \cdot -2 = -4$.