February 28, $2008 \quad$ Name
The total number of points available is 137 . Throughout this test, show your work.

1. (15 points) Let $f(x)=\sqrt{x^{4}-3 x+11}$.
(a) Compute $f^{\prime}(x)$

Solution: $f^{\prime}(x)=\frac{1}{2}\left(x^{4}-3 x+11\right)^{-1 / 2}\left(4 x^{3}-3\right)=\frac{4 x^{3}-3}{2 \sqrt{x^{4}-3 x+11}}$.
(b) What is $f^{\prime}(1)$ ?

Solution: $f^{\prime}(1)=\frac{4-3}{2 \sqrt{1-3+11}}=1 / 6$
(c) Use the information in (b) to find an equation for the line tangent to the graph of $f$ at the point $(1, f(1))$.
Solution: Since $f(1)=2$, using the point-slope form leads to $y-3=$ $f^{\prime}(1)(x-1)=(x-1) / 6$, so $y=x / 6+17 / 6$.
2. (15 points) For what values of $x$ is the line tangent to the graph of

$$
f(x)=(2 x+1)^{2}(3 x-4)^{2}
$$

parallel to the line $y=7$ ?
Solution: Since $f^{\prime}(x)=2(2 x+1) \cdot 2 \cdot(3 x-4)^{2}+2(3 x-4) \cdot 3 \cdot(2 x+1)^{2}$, we seek those values of $x$ such that $2(2 x+1)(3 x-4)[2(3 x-4)+3(2 x+1)]=0$. Factoring and simplifying yields $x=-1 / 2, x=4 / 3$ and $6 x-8+6 x+3=0$, so the three values of are $x=-1 / 2, x=4 / 3$ and $x=5 / 12$.
3. (32 points) The cost of producing widgets is given by $C(x)=10000+50 x-$ $0.003 x^{2}, \quad 0 \leq x \leq 1000$. The relationship between price and demand for widgets is given by $p=f(x)=-0.04 x+300, \quad 0 \leq x \leq 7000$, where $p$ is the price in dollars.
(a) Find the average cost function $\bar{C}(x)$.

Solution: $\bar{C}(x)=10000 / x+50-0.003 x$.
(b) Find the (incremental) cost of producing the $500^{\text {th }}$ widget.

Solution: $\quad C(500)-C(499)=10000+50 \cdot 500-0.001 \cdot 500^{2}-(10000+$ $\left.50 \cdot 499-0.001 \cdot 499^{2}\right)=50-0.003(999)=47.003$.
(c) Find the marginal cost function $C^{\prime}(x)$.

Solution: $C^{\prime}(x)=50-0.006 x$.
(d) What is $C^{\prime}(500)$ ?

Solution: $C^{\prime}(500)=50-0.006(500)=47$.
(e) Find the marginal average cost function $\bar{C}^{\prime}(x)$.

Solution: $\bar{C}^{\prime}(x)=-10000 / x^{2}-0.003$.
(f) Find the revenue function $R(x)$.

Solution: $R(x)=x p=x f(x)=x(-0.2 x+300)=-.04 x^{2}+300 x$.
(g) Find the marginal revenue function $R^{\prime}(x)$.

Solution: $R^{\prime}(x)=-0.08 x+300$.
(h) Find the profit function $P(x)$.

Solution: $P(x)=R(x)-C(x)=250 x-0.037 x^{2}-10000$.
(i) Find the marginal profit function $P^{\prime}(x)$.

Solution: $P^{\prime}(x)=250-0.074 x$.
(j) Find a value of $x$ where the profit function $P(x)$ has a horizontal tangent line.
Solution: Solve $P^{\prime}(x)=0$ for $x$ to get $x=250 \div 0.074 \approx 3378$.
4. (20 points) Compute the following derivatives.
(a) Let $f(x)=\left(1+\sqrt{1+x^{2}}\right)^{2}$. Find $\frac{d}{d x} f(x)$.

Solution: Note that $f^{\prime}(x)=2\left(1+\sqrt{1+x^{2}}\right) \cdot 1 / 2\left(1+x^{2}\right)^{-1 / 2} \cdot(2 x)=$ $2 x\left(1+\sqrt{1+x^{2}}\right) \div \sqrt{1+x^{2}}$.
(b) Find $\frac{d}{d t}\left(t^{-3}-\sqrt{t^{3}}\right)$.

Solution: By the chain rule, $\frac{d}{d t} \frac{d}{d t}\left(t^{-2}-t^{2 / 3}\right)=-3 t^{-4}-\frac{3}{2} t^{1 / 2}$.
(c) Let $g(x)=x^{2} /\left(1+x^{2}\right)$. What is $g^{\prime}(x)$ ?

Solution: Use the quotient rule to get $g^{\prime}(x)=2 x\left(1+x^{2}\right)-2 x\left(x^{2}\right) \div(1+$ $\left.x^{2}\right)^{2}=\frac{2 x}{\left(1+x^{2}\right)^{2}}$.
(d) Find $\frac{d}{d x} \sqrt{\frac{2 x^{2}+1}{3 x+2}}$.

Solution: By the chain and quotient rules, $\frac{d}{d x} \frac{2 x^{3}+1}{x-2}=\left(\frac{2 x^{2}+1}{3 x+2}\right)^{-1 / 2}$. $\frac{6 x^{2}+8 x-3}{2(3 x+2)^{2}}$.
5. (20 points) Find the domain of the function

$$
f(x)=\sqrt{\frac{(x-2)(x+2)(3 x-1)}{\left(3 x^{2}-27\right)(x-2)}}
$$

Express your answer in interval form.
Solution: Notice first that $f$ is not in factored form. Factoring reveals that the numerator and denominator have common factors. Thus

$$
r(x)=\frac{(x-2)(x+2)(3 x-1)}{3\left(x^{2}-9\right)(x-2)}
$$

We can cancel the common factors with the understanding that we are (very slightly) enlarging the domain of $r: r(x)=\frac{(x+2)(3 x-1)}{3(x-3)(x+3}$. Next find the branch points. These are the points at which $f$ can change signs. Precisely, they are the zeros of the numerator and of the denominator. They are $-3,-2,1 / 3,3$. Again we select test points and find the sign of $f$ at of these points to get the sign chart. Again suppose that we are solving $f(x) \geq 0$ The solution to $f(x)>0$ is easy. It is the union of the open intervals with the + signs, $(-\infty,-3) \cup(-2,1 / 3) \cup(3, \infty)$. It remains to solve $f(x)=0$ and attach these solutions to what we have. The zeros of $f$ are -4 and $1 / 3$. So the solution to $f(x) \geq 0$ is $(-\infty,-3] \cup[-2,1 / 3] \cup(3, \infty)$.
6. (35 points) Consider the table of values given for the functions $f, f^{\prime}, g$, and $g^{\prime}$ :

| $x$ | $f(x)$ | $f^{\prime}(x)$ | $g(x)$ | $g^{\prime}(x)$ |
| :--- | ---: | ---: | ---: | ---: |
| 0 | 2 | 1 | 3 | 2 |
| 1 | 4 | 6 | 2 | 5 |
| 2 | 6 | 4 | 3 | 4 |
| 3 | 1 | 2 | 5 | 3 |
| 4 | 3 | 5 | 2 | 6 |
| 5 | 5 | 3 | 4 | 1 |
| 6 | 0 | 3 | 2 | 4 |

(a) Let $L(x)=\frac{x+f(x)}{g(x)}$. Compute $L^{\prime}(2)$.

Solution: $L^{\prime}(x)=\left(1+f^{\prime}(x) g(x)-g^{\prime}(x)(x+f(x)) \div g(x)^{2}\right.$, so $L^{\prime}(2)=$ $\left(1+f^{\prime}(2) g(2)-g^{\prime}(2)(2+f(2)) \div g(2)^{2}=(1+4) \cdot 3-4 \cdot(2+6) \div 9=-17 / 9\right.$.
(b) Let $U(x)=f \circ f(2 x)$. Compute $U^{\prime}(1)$.

Solution: By the chain rule, $U^{\prime}(x)=2 f^{\prime}(f(x)) \cdot f^{\prime}(2 x)$, so $U^{\prime}(1)=$ $2 f^{\prime}(f(2)) \cdot f^{\prime}(2)=2 f^{\prime}(6) \cdot f^{\prime}(2)=2 \cdot 3 \cdot 4=24$.
(c) Let $K(x)=g\left(x^{3}\right)+f(x)$. Compute $K^{\prime}(1)$

Solution: $K^{\prime}(x)=g^{\prime}\left(x^{3}\right) \cdot 3 x^{2}+f^{\prime}(x)$, so $K^{\prime}(1)=g^{\prime}(1) \cdot 3+f^{\prime}(1)=$ $5 \cdot 3+6=21$.
(d) Let $Z(x)=g(2 x-f(x))$. Compute $Z^{\prime}(3)$. Be careful here with the parens. Note that the inside function is $2 x-f(x)$.
Solution: Again by the chain rule and the product rule, $Z^{\prime}(x)=g^{\prime}(2 x-$ $f(x)) \cdot\left(2-f^{\prime}(x)\right)$ so $Z^{\prime}(3)=g^{\prime}(6-f(3)) \cdot\left(2-f^{\prime}(3)\right)=g^{\prime}(5)(2-2)=0$.
(e) Let $Q(x)=g(2 x) \cdot f(3 x)$. Compute $Q^{\prime}(2)$.

Solution: Again by the product rule and chain rule, $Q^{\prime}(x)=2 g^{\prime}(2 x)$. $f(3 x)+3 f^{\prime}(3 x) \cdot g(2 x)$ so $Q^{\prime}(1)=2 g^{\prime}(2 \cdot 2) \cdot f(3 \cdot 2)+3 f^{\prime}(3 \cdot 2) \cdot g(2 \cdot 2)=$ $2 g^{\prime}(4) \cdot f(6)+3 f^{\prime}(6) \cdot g(4)=2 \cdot 6 \cdot 0+3 \cdot 3 \cdot 2=18$.
(f) Let $V(x)=f(2+g(x-2))$. Compute $V^{\prime}(2)$.

Solution: Again, by the chain rule, $V^{\prime}(x)=f^{\prime}(2+g(x-2)) \cdot g^{\prime}(x-2)$, so $V^{\prime}(2)=f^{\prime}(g(0)) \cdot g^{\prime}(0)=f^{\prime}(5) \cdot g^{\prime}(0)=3 \cdot 2=6$.
(g) Let $W(x)=g(x-f(x))$. Compute $W^{\prime}(5)$.

Solution: Again by the chain rule, $W^{\prime}(x)=g^{\prime}(x-f(x)) \cdot\left(1-f^{\prime}(x)\right.$, so $W^{\prime}(5)=g^{\prime}(5-f(5)) \cdot\left(1-f^{\prime}(5)\right)=2 \cdot-2=-4$.

