October 25, 2007
Name
The total number of points available is 131. Throughout this test, show your work.

1. (12 points) Let $f(x)=\sqrt{x^{2}-x+3}$.
(a) Compute $f^{\prime}(x)$

Solution: $f^{\prime}(x)=\frac{1}{2}\left(x^{2}-x+3\right)^{-1 / 2} \cdot 2 x-1=\frac{2 x-1}{2 \sqrt{x^{2}-x+3}}$.
(b) What is $f^{\prime}(3)$?

Solution: $f^{\prime}(3)=\frac{2 \cdot 3-1}{2 \cdot 9^{1 / 2}}=5 / 6$
(c) Use the information in (b) to find an equation for the line tangent to the graph of f at the point $(3, f(3))$.
Solution: Since $f(3)=3$, using the point-slope form leads to $y-3=$ $f^{\prime}(3)(x-3)=5(x-3) / 6$, so $y=5 x / 6+1 / 2$.
2. (12 points) Consider the function f defined by:

$$
f(x)= \begin{cases}\sqrt{x+3} & \text { if } x<1 \\ 2 & \text { if } x=1 \\ 2(x-2)^{2} & \text { if } x>1\end{cases}
$$

(a) Is f continuous at $x=1$? Your answer must make clear that you know and understand the definition of continuity. A yes/no correct answer is worth 1 point.
Solution: Yes, the limits from the left and right are both 2, and the value of f at 1 is 2 , so $\lim _{x \rightarrow 1} f(x)=f(1)$.
(b) What is the slope of the line tangent to the graph of f at the point $(8,72)$?

Solution: To find $f^{\prime}(8)$ first note that when x is near $8, f(x)=2(x-2)^{2}$ so $f^{\prime}(x)=4(x-2)$. Thus, $f^{\prime}(8)=4(8-2) 24$.
(c) Find $f^{\prime}(-2)$

Solution: To find $f^{\prime}(-2)$, we must differentiate the part of f defined for $x<1$. In this area, $f^{\prime}(x)=(x+3)^{-1 / 2} / 2$, so $f^{\prime}(-2)=1 / 2$.
3. (18 points) If a ball is thrown vertically upward from the roof of 128 foot building with a velocity of $64 \mathrm{ft} / \mathrm{sec}$, its height after t seconds is $s(t)=128+$ $64 t-16 t^{2}$.
(a) What is the height the ball at time $t=1$?

Solution: $s(1)=176$.
(b) What is the velocity of the ball at the time it reaches its maximum height?
Solution: $s^{\prime}(t)=v(t)=0$ when the ball reaches its max height.
(c) What is the maximum height the ball reaches?

Solution: Solve $s^{\prime}(t)=64-32 t=0$ to get $t=2$ when the ball reaches its zenith. Thus, the max height is $s(2)=128+64(2)-16(2)^{2}=192$.
(d) After how many seconds is the ball exactly 160 feet above the ground?

Solution: Use the quadratic formula to solve $128+64 t-16 t^{2}=160$. You get $t=\frac{4 \pm \sqrt{16-8}}{2}=2 \pm \sqrt{2}$.
(e) How fast is the ball going the first time it reaches the height 160 ?

Solution: Evaluate $s(t)$ when $t=2-\sqrt{2}$ to get $32 \sqrt{2}$.
(f) How fast is the ball going the second time it reaches the height 160 ? olEvaluate $s(t)$ when $t=2+\sqrt{2}$ to get $-32 \sqrt{2}$. In other words the ball is going downward at the same rate it was moving upwards when first went through 160 feet.
4. (12 points) The cost of producing x units of stuffed alligator toys is $C(x)=$ $0.004 x^{2}+8 x+6000$.
(a) Find the marginal cost at the production level of 1000 units.

Solution: $C^{\prime}(x)=\frac{d}{d x} 0.004 x^{2}+8 x+6000=0.008 x+8$ so $C^{\prime}(1000)=16$.
(b) What is the marginal average cost function?

Solution: $\bar{C}(x)=0.004 x+8+6000 x^{-1}$, so $\bar{C}^{\prime}(x)=0.004-6000 x^{-2}$.
(c) What is $\bar{C}^{\prime}(500)$? Interpret your answer.

Solution: $\bar{C}(500)=-0.02$, which means the average cost is decreasing when the production level is 500 .
5. (30 points) Consider the table of values given for the functions f, f^{\prime}, g, and g^{\prime} :

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
0	2	1	6	2
1	4	6	2	5
2	6	4	3	4
3	1	2	5	3
4	3	5	2	6
5	5	3	4	1
6	0	3	2	4

(a) Let $L(x)=f(x) / g(x)$. Compute $L^{\prime}(2)$.

Solution: Use the quotient rule. $L^{\prime}(x)=\frac{f^{\prime}(x) g(x)-g^{\prime}(x) f(x)}{g(x)^{2}}$, so $L^{\prime}(2)=$ $\left(f^{\prime}(2) g(2)-g^{\prime}(2) f(2) / g(2)^{2}=(4 \cdot 3-4 \cdot 6) / 9=-4 / 3\right.$.
(b) Let $U(x)=f \circ f(x)$. Compute $U^{\prime}(1)$.

Solution: By the chain rule, $U^{\prime}(x)=f^{\prime}(f(x)) \cdot f^{\prime}(x)$, so $U^{\prime}(1)=f^{\prime}(f(1))$. $f^{\prime}(1)=f^{\prime}(4) \cdot f^{\prime}(1)=5 \cdot 6=30$.
(c) Let $K(x)=\sqrt{f(x)}$. Compute $K^{\prime}(1)$

Solution: $K^{\prime}(x)=f(x)^{-1 / 2} / 2 \cdot f^{\prime}(x)$. So $K^{\prime}(1)=1 / 2 \operatorname{sqrtf}(1) \cdot f^{\prime}(1)=$ $6 / 4=3 / 2$.
(d) Let $V(x)=x^{2}(g(2 x))$. Compute $V^{\prime}(3)$.

Solution: Again, by the product rule and the chain rule, $V^{\prime}(x)=$ $2 x(g(2 x))+x^{2} g^{\prime}(2 x) \cdot 2$, so $V^{\prime}(3)=2 \cdot 3 g(6)+18 g^{\prime}(6)=6 \cdot 2+18 \cdot 4=$ $12+72=84$.
(e) Let $W(x)=[g(x-f(x))]^{3}$. Compute $W^{\prime}(4)$.

Solution: Again by the chain rule, $W^{\prime}(x)=3 g(x-f(x))^{2} \cdot g^{\prime}(x-$ $f(x)) \cdot\left(1-f^{\prime}(x)\right)$, so $W^{\prime}(4)=3 g(4-f(4))^{2} \cdot g^{\prime}(4-f(4)) \cdot\left(1-f^{\prime}(4)\right)=$ $3 g(1) \cdot g^{\prime}(1) \cdot(1-5)=3 \cdot 4 \cdot 5(1-5)=-240$.
(f) Let $Z(x)=f\left(x^{2}+g(x)\right)$. Compute $Z^{\prime}(1)$.

Solution: Again by the chain rule and the product rule, $Z^{\prime}(x)=f^{\prime}\left(x^{2}+\right.$ $g(x)) \cdot \frac{d}{d x}\left(x^{2}+g(x)\right)=f^{\prime}\left(x^{2}+g(x)\right) \cdot\left(2 x+g^{\prime}(x)\right)$, so $Z^{\prime}(1)=f^{\prime}(1+g(1))$. $\left(2 \cdot 1+g^{\prime}(1)\right)=f^{\prime}(3) \cdot(2+5)=2 \cdot 7=14$.
6. (15 points) Compute the following derivatives.
(a) Let $f(x)=\left(x+\sqrt{1+x^{3}}\right)^{4}$. Find $\frac{d}{d x} f(x)$.

Solution: We differentiate it using the power rule and chain rule: $f^{\prime}(x)=$ $4\left(x+\sqrt{1+x^{3}}\right)^{3} \cdot\left(1+\left(\frac{1}{2}\left(1+x^{3}\right)^{-1 / 2} \cdot 3 x^{2}\right)\right)$.
(b) Let $g(x)=x^{2} /\left(1+x^{2}\right)$. What is $g^{\prime}(x)$?

Solution: Use the quotient rule to get $g^{\prime}(x)=2 x\left(1+x^{2}\right)-2 x\left(x^{2}\right) \div(1+$ $\left.x^{2}\right)^{2}=\frac{2 x}{\left(1+x^{2}\right)^{2}}$.
(c) Find $\frac{d}{d x} \sqrt{\frac{2 x^{3}+1}{3 x-2}}$.

Solution: By the chain and quotient rules, $\frac{d}{d x} \frac{2 x^{3}+1}{3 x-2}=\frac{1}{2}\left(\frac{2 x^{3}+1}{3 x-2}\right)^{-1 / 2}$. $\frac{6 x^{2}(3 x-2)-3\left(2 x^{3}+1\right)}{(3 x-2)^{2}}$. This expressions simplifies to one with a numerator $12 x^{3}-12 x^{2}-3$.
7. (12 points) Find all critical points of $f(x)=\left((x+2)^{2} \cdot(2 x-1)\right)$. Then identify each critical point as the location of a local maximum, local minimum, or neither.
Solution: By the product rule, $f^{\prime}(x)=(2(x+2) \cdot(2 x-1))+2(x+2)^{2}=$ $2(x+2)[(2 x-1)+(x+2)]=2(x+2)(3 x+1)$, so the stationary points are $x=-2$ and $x=-1 / 3$. Since $f^{\prime}(x)$ is negative between these two critical points, it follows that f has a local max at $x=-2$ and a local min at $x=-1 / 3$.
8. (20 points) Suppose a function f has been differentiated to give

$$
f^{\prime}(x)=\left(x^{2}-4\right)(x)\left(3 x^{2}-75\right)(x-2) .
$$

Use the Test Interval Technique on f^{\prime} to find the sign chart for f^{\prime}. Then list in interval notation the intervals over which the function f is increasing.
Solution: Notice first that f^{\prime} is not in factored form. Factoring reveals $f^{\prime}(x)=\left(x^{2}-4\right)(x)\left(3 x^{2}-75\right)(x-2)=3(x-2)^{2}(x)(x+2)(x-5)(x+5)$. Next find the branch points. These are the points at which f^{\prime} is zero. They are $-2,2,0,5,-5$. Again we select test points and find the sign of f at of these points to get the sign chart.

So you can see from the sign chart that f is increasing on all three of the intervals $(-\infty,-5],[-2,0]$ and $[5, \infty)$. Of course, using (and) instead of [and] is fine.

