October 25, 2007 Name

The total number of points available is 143. Throughout this test, **show your work**.

- 1. (12 points) Let $f(x) = \sqrt{x^2 x + 3}$.
 - (a) Compute f'(x)
 - (b) What is f'(3)?
 - (c) Use the information in (b) to find an equation for the line tangent to the graph of f at the point (3, f(3)).
- 2. (12 points) Consider the function f defined by:

$$f(x) = \begin{cases} \sqrt{x+3} & \text{if } x < 1\\ 2 & \text{if } x = 1\\ 2(x-2)^2 & \text{if } x > 1 \end{cases}$$

- (a) Is f continuous at x = 1? Your answer must make clear that you know and understand the definition of continuity. A yes/no correct answer is worth 1 point.
- (b) What is the slope of the line tangent to the graph of f at the point (8, 72)?
- (c) Find f'(-2)

- 3. (18 points) If a ball is thrown vertically upward from the roof of 128 foot building with a velocity of 64 ft/sec, its height after t seconds is $s(t) = 128 + 64t 16t^2$.
 - (a) What is the height the ball at time t = 1?
 - (b) What is the velocity of the ball at the time it reaches its maximum height?
 - (c) What is the maximum height the ball reaches?
 - (d) After how many seconds is the ball exactly 160 feet above the ground?
 - (e) How fast is the ball going the first time it reaches the height 160?
 - (f) How fast is the ball going the second time it reaches the height 160?

- 4. (12 points) The cost of producing x units of stuffed alligator toys is $C(x) = 0.004x^2 + 8x + 6000$.
 - (a) Find the marginal cost at the production level of 1000 units.

(b) What is the marginal average cost function?

(c) What is $\overline{C}'(500)$? Interpret your answer.

5. (30 points) Consider the table of values given for the functions f, f', g, and g':

$x \mid$	$\int f(x)$	f'(x)	g(x)	$\left g'(x) \right $
0	2	1	6	2
1	4	6	2	5
2	6	4	3	4
3	1	2	5	3
4	3	5	2	6
5	5	3	4	1
6	0	3	2	4

(a) Let L(x) = f(x)/g(x). Compute L'(2).

(b) Let $U(x) = f \circ f(x)$. Compute U'(1).

(c) Let
$$K(x) = \sqrt{f(x)}$$
. Compute $K'(1)$

(d) Let
$$V(x) = x^2(g(2x))$$
. Compute $V'(3)$.

(e) Let $W(x) = [g(x - f(x))]^3$. Compute W'(4).

(f) Let $Z(x) = f(x^2 + g(x))$. Compute Z'(1).

- 6. (15 points) Compute the following derivatives.
 - (a) Let $f(x) = (x + \sqrt{1 + x^3})^4$. Find $\frac{d}{dx}f(x)$.

(b) Let
$$g(x) = x^2/(1+x^2)$$
. What is $g'(x)$?

(c) Find
$$\frac{d}{dx}\sqrt{\frac{2x^3+1}{3x-2}}$$
.

7. (12 points) Find all critical points of $f(x) = ((x+2)^2 \cdot (2x-1))$. Then identify each critical point as the location of a local maximum, local minimum, or neither. 8. (20 points) Suppose a function f has been differentiated to give

$$f'(x) = (x^2 - 4)(x)(3x^2 - 75)(x - 2).$$

Use the Test Interval Technique on f' to find the sign chart for f'. Then list in interval notation the intervals over which the function f is increasing.