March 1, 2007
Name
The total number of points available is 131. Throughout this test, show your work.

1. (12 points) Let $f(x)=\sqrt{x^{4}-2 x+5}$.
(a) Compute $f^{\prime}(x)$

Solution: $f^{\prime}(x)=\frac{1}{2}\left(x^{4}-2 x+5\right)^{-1 / 2}\left(4 x^{3}-2\right)=\frac{4 x^{3}-2}{2 \sqrt{x^{4}-2 x+5}}$.
(b) What is $f^{\prime}(1)$?

Solution: $f^{\prime}(1)=\frac{4-2}{2 \sqrt{1-2+5}}=1 / 2$
(c) Use the information in (b) to find an equation for the line tangent to the graph of f at the point $(1, f(1))$.
Solution: Since $f(1)=2$, using the point-slope form leads to $y-2=$ $f^{\prime}(2)(x-1)=(x-1) / 2$, so $y=x / 2+3 / 2$.
2. (12 points) For what values of x is the tangent line of the graph of

$$
f(x)=2 x^{3}-3 x^{2}-72 x+12
$$

parallel to the line $y=-60 x+7$?
Solution: Since $f^{\prime}(x)=6 x^{2}-6 x+72=6\left(x^{2}-x-12\right)$, we seek those values of x such that $6\left(x^{2}-x-12\right)=-60$. Factoring and simplifying yields $x^{2}-x-12=-10$ and $(x-2)(x+1)=0$, so the two values of are $x=-1$ and $x=2$.
3. (32 points) The cost of producing widgets is given by $C(x)=10000+40 x-$ $0.001 x^{2}, \quad 0 \leq x \leq 1000$. The relationship between price and demand for widgets is given by $p=f(x)=-0.02 x+300, \quad 0 \leq x \leq 7000$.
(a) Find the average cost function $\bar{C}(x)$.

Solution: $\bar{C}(x)=10000 / x+40-0.001 x$.
(b) Find the (incremental) cost of producing the $500^{\text {th }}$ widget.

Solution: $\quad C(500)-C(499)=10000+40 \cdot 500-0.001 \cdot 500^{2}-(10000+$ $\left.40 \cdot 499-0.001 \cdot 499^{2}\right)=40-0.001(999)=39.001$.
(c) Find the marginal cost function $C^{\prime}(x)$.

Solution: $C^{\prime}(x)=40-0.002 x$.
(d) What is $C^{\prime}(500)$?

Solution: $C^{\prime}(500)=40-0.002(500)=40-1=39$.
(e) Find the marginal average cost function $\bar{C}^{\prime}(x)$.

Solution: $\bar{C}^{\prime}(x)=-10000 / x^{2}-0.001$.
(f) Find the revenue function $R(x)$.

Solution: $R(x)=x p=x f(x)=x(-0.2 x+300)=-.02 x^{2}+300 x$.
(g) Find the marginal revenue function $R^{\prime}(x)$.

Solution: $R^{\prime}(x)=-0.04 x+300$.
(h) Find the profit function $P(x)$.

Solution: $P(x)=R(x)-C(x)=260 x-0.019 x^{2}-10000$.
(i) Find the marginal profit function $P^{\prime}(x)$.

Solution: $P^{\prime}(x)=260-0.038 x$.
(j) Find a value of x where the profit function $P(x)$ has a horizontal tangent line.
Solution: Solve $P^{\prime}(x)=0$ for x to get $x=260 \div 0.038 \approx 6,842$.
4. (30 points) Consider the table of values given for the functions f, f^{\prime}, g, and g^{\prime} :

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
0	2	1	6	2
1	4	6	2	5
2	6	4	3	4
3	1	2	5	3
4	3	5	2	6
5	5	3	4	1
6	0	3	2	4

(a) Let $L(x)=\frac{f(x)}{g(x)}$. Compute $L^{\prime}(2)$.

Solution: $L^{\prime}(x)=\left(f^{\prime}(x) g(x)-g^{\prime}(x) f(x)\right) \div g(x)^{2}$, so $L^{\prime}(2)=\left(f^{\prime}(2) g(2)-\right.$ $\left.g^{\prime}(2) f(2)\right) \div g(2)^{2}=(4 \cdot 3-4 \cdot 6) \div 9=-4 / 3$.
(b) Let $U(x)=g \circ f(x)$. Compute $U^{\prime}(1)$.

Solution: By the chain rule, $U^{\prime}(x)=g^{\prime}(f(x)) \cdot f^{\prime}(x)$, so $U^{\prime}(1)=g^{\prime}(f(1))$. $f^{\prime}(1)=g^{\prime}(4) \cdot f^{\prime}(1)=6 \cdot 6=36$.
(c) Let $K(x)=g\left(x^{2}\right)+f(x)$. Compute $K^{\prime}(1)$

Solution: $K^{\prime}(x)=g^{\prime}\left(x^{2}\right) \cdot 2 x+f^{\prime}(1)$, so $K^{\prime}(1)=g^{\prime}(1) \cdot 2 \cdot 1+f^{\prime}(1)=$ $5 \cdot 2+6=16$.
(d) Let $V(x)=f\left(g\left(x^{2}\right)\right)$. Compute $V^{\prime}(2)$.

Solution: Again, by the chain rule, $V^{\prime}(x)=f^{\prime}\left(g\left(x^{2}\right)\right) \cdot g^{\prime}\left(x^{2}\right) \cdot 2 x$, so $V^{\prime}(2)=f^{\prime}(g(4)) \cdot g^{\prime}(4) \cdot 4=f^{\prime}(2) \cdot g^{\prime}(4) \cdot 2=4 \cdot 6 \cdot 4=96$.
(e) Let $W(x)=g(f(x)-x)$. Compute $W^{\prime}(5)$.

Solution: Again by the chain rule, $W^{\prime}(x)=g^{\prime}(f(x)-x) \cdot\left(f^{\prime}(x)-1\right)$, so $W^{\prime}(5)=g^{\prime}(f(5)-5) \cdot\left(f^{\prime}(5)-1\right)=g^{\prime}(0)(3-1)=2 \cdot 2=4$.
(f) Let $Z(x)=f(3 x-f(x))$. Compute $Z^{\prime}(1)$.

Solution: Again by the chain rule and the product rule, $Z^{\prime}(x)=f^{\prime}(3 x-$ $f(x)) \cdot\left(3-f^{\prime}(x)\right.$ so $Z^{\prime}(1)=f^{\prime}(3-f(1)) \cdot\left(3-f^{\prime}(1)\right)=f^{\prime}(-1)(3-6)=$ $-3 f^{\prime}(-1)$.
5. (20 points) Compute the following derivatives.
(a) Let $f(x)=\left(1+\sqrt{1+x^{4}}\right)^{2}$. Find $\frac{d}{d x} f(x)$.

Solution: Note that $f^{\prime}(x)=2\left(1+\sqrt{1+x^{4}}\right) \cdot 1 / 2\left(1+x^{4}\right)^{-1 / 2} \cdot\left(4 x^{3}\right)=$ $4 x^{3}\left(1+s q r t 1+x^{4}\right) \div \sqrt{1+x^{4}}$.
(b) Let $g(x)=x^{2} /\left(1+x^{3}\right)$. What is $g^{\prime}(x)$?

Solution: Use the quotient rule to get $g^{\prime}(x)=2 x\left(1+x^{3}\right)-3 x^{2}\left(x^{2}\right) \div$ $\left(1+x^{3}\right)^{2}=\frac{-x^{4}+2 x}{\left(1+x^{3}\right)^{2}}$.
(c) Find $\frac{d}{d x}\left((x-2)^{2} \cdot(3 x-1)\right)$.

Solution: By the product rule, $\frac{d}{d x}\left((x-2)^{2} \cdot(3 x-1)\right)=2(x-2) \cdot(3 x-$ 1) $+3(x-2)^{2}=(x-2)(9 x-8)$.
(d) Find $\frac{d}{d x} \sqrt{\frac{2 x^{2}+1}{3 x+2}}$.

Solution: By the chain and quotient rules, $\frac{d}{d x} \frac{2 x^{3}+1}{x-2}=\frac{1}{2}\left(\frac{2 x^{2}+1}{3 x+2}\right)^{-1 / 2}$. $\frac{4 x(3 x+2)-3\left(2 x^{2}+1\right)}{(3 x+2)^{2}}$.
(e) Find $\frac{d}{d t}\left(t^{-2}-t^{2 / 3}\right)$.

Solution: By the chain rule, $\frac{d}{d t} \frac{d}{d t}\left(t^{-2}-t^{2 / 3}\right)=-2 t^{-3}-\frac{2}{3} t^{-1 / 3}$.
6. (25 points) Find the domain of the function

$$
f(x)=\sqrt{\frac{(x-4)(x+4)(3 x-1)}{\left(3 x^{2}-3\right)(x-4)}} .
$$

Express your answer in interval form.
Solution: Notice first that f is not in factored form. Factoring reveals that the numerator and denominator have common factors. Thus

$$
r(x)=\frac{(x-4)(x+4)(3 x-1)}{\left(3 x^{2}-3\right)(x-4)}
$$

We can cancel the common factors with the understanding that we are (very slightly) enlarging the domain of $r: r(x)=\frac{(x+4)(3 x-1)}{3(x-1)(x+1)}$. Next find the branch points. These are the points at which f can change signs. Precisely, they are the zeros of the numerator and of the denominator. They are $-4,1 / 3,1,-1$. Again we select test points and find the sign of f at of these points to get the sign chart.
$+\underset{-4}{++_{1}}-,-\cdots \underset{-1}{.}+\underset{1 / 3}{-\cdots}{ }_{i}+++++,+++++_{1}++$
Again suppose that we are solving $f(x) \geq 0$ The solution to $f(x)>0$ is easy. It is the union of the open intervals with the + signs, $(-\infty,-4) \cup$ $(-1,1 / 3) \cup(1, \infty)$. It remains to solve $f(x)=0$ and attach these solutions to what we have. The zeros of f are -4 and $1 / 3$. So the solution to $f(x) \geq 0$ is $(-\infty,-4] \cup(-1,1 / 3] \cup(1, \infty)$. Notice that the branch points 1 and -1 are not included since f is not defined at these two points. It has vertical asymptotes at these two places. Technically the value $x=4$ should not be included in the solution because the function f as originally defined is not defined at $x=4$. Thus, the exact answer is $(-\infty,-2] \cup(-1,1 / 3] \cup(1,4) \cup(4, \infty)$.

