October 19, 2006
Name
The total number of points available is 148. Throughout this test, show your work.

1. (9 points) Let $f(x)=x^{3}-2 x-3$.
(a) Compute $f^{\prime}(x)$

Solution: $f^{\prime}(x)=3 x^{2}-2$
(b) What is $f^{\prime}(2)$?

Solution: $f^{\prime}(2)=3 \cdot 2^{2}-2=10$.
(c) Use the information in (b) to find an equation for the line tangent to the graph of f at the point $(2, f(2))$.
Solution: Since $f(2)=2^{3}-2 \cdot 2-3=1$, using the point-slope form leads to $y-1=f^{\prime}(2)(x-2)=10(x-2)$, so $y=10 x-19$.
2. (12 points) Consider the function f defined by:

$$
f(x)= \begin{cases}x+x^{3} & \text { if } x<1 \\ 2 & \text { if } x=1 \\ 2 x^{1 / 2} & \text { if } x>1\end{cases}
$$

(a) Is f continuous at $x=1$?

Solution: Yes, the limits from the left and right are both 2, and the value of f at 1 is 2 .
(b) What is the slope of the line tangent to the graph of f at the point $(4,4)$? Solution: To find $f^{\prime}(4)$ first note that when x is near $8, f(x)=2 x^{1 / 2}$ so $f^{\prime}(x)=2 \frac{1}{2} x^{-1 / 2}$. Thus, $f^{\prime}(4)=2 \frac{1}{2} 4^{-1 / 2}=2 \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{2}$.
(c) Find $f^{\prime}(-3)$

Solution: To find $f^{\prime}(-3)$, we must differentiate the part of f defined for $x<1$. In this area, $f^{\prime}(x)=1+3 x^{2}$, so $f^{\prime}(-3)=1+3(-3)^{2}=28$.
3. (15 points) If a ball is thrown vertically upward from the roof of 212 foot building with a velocity of $48 \mathrm{ft} / \mathrm{sec}$, its height after t seconds is $s(t)=212+$ $48 t-16 t^{2}$.
(a) What is the height the ball at time $t=0$?

Solution: $s(0)=212$.
(b) What is the velocity of the ball at the time it reaches its maximum height?
Solution: $s^{\prime}(t)=v(t)=0$ when the ball reaches its max height.
(c) At what time is the velocity zero?

Solution: Solve $48-32 t=0$ to get $t=3 / 2$.
(d) What is the maximum height the ball reaches?

Solution: Solve $s^{\prime}(t)=48-32 t=0$ to get $t=3 / 2$ when the ball reaches its zenith. Thus, the max height is $s(3 / 2)=212+48(3 / 2)-16(3 / 2)^{2}=$ 248.
(e) What is the velocity of the ball when it hits the ground (height 0)?

Solution: Solve $s(t)=0$ using the quadratic formula to get $t=\frac{3 \pm \sqrt{9+52}}{2}=$ $\frac{3 \pm \sqrt{61}}{2} \approx 5.405$, since the larger is the only reasonable answer. Find $s^{\prime}(5.405) \approx-124.96$ feet $/ \mathrm{sec}$.
4. (10 points) The cost of producing x units of stuffed alligator toys is $C(x)=$ $-0.003 x^{2}+6 x+6000$ for $0 \leq x \leq 1000$.
(a) Find the marginal cost at the production level of 1000 units.

Solution: $C^{\prime}(x)=\frac{d}{d x}-0.003 x^{2}+6 x+6000=-0.006 x+6$ so $C^{\prime}(1000)=$ $-6+6=0$.
(b) Find the (incremental) cost of producing the $1000^{\text {th }}$ toy.

Solution: $C(1000)-C(999)=-0.003(1000-999)^{2}+6(1000-999)+$ $6000-6000=-0.003(1999)+6=0.003$.
5. (30 points) Consider the table of values given for the functions f, f^{\prime}, g, and g^{\prime} :

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
0	2	1	6	2
1	4	6	2	5
2	6	4	3	4
3	1	2	5	3
4	3	5	2	6
5	5	3	4	1
6	0	3	2	4

(a) Let $L(x)=f(x)+g(x)$. Compute $L^{\prime}(2)$.

Solution: $L^{\prime}(x)=f^{\prime}(x)+g^{\prime}(x)$, so $L^{\prime}(2)=f^{\prime}(2)+g^{\prime}(2)=4+4=8$.
(b) Let $U(x)=g \circ g(x)$. Compute $U(1)$.

Solution: $U(1)=g(g(1))=g(2)=3$.
(c) Let $K(x)=g\left(x^{2}\right) \cdot f(x)$. Compute $K(2)$.

Solution: $K(2)=g(4) \cdot f(2)=2 \cdot 6=12$.
(d) Again, $K(x)=g\left(x^{2}\right) \cdot f(x)$. Compute $K^{\prime}(2)$.

Solution: $K^{\prime}(x)=g^{\prime}\left(x^{2}\right) \cdot 2 x \cdot f(x)+f^{\prime}(x) g\left(x^{2}\right)$, so $K^{\prime}(2)=g^{\prime}(4) \cdot 4$. $f(2)+f^{\prime}(2) g(4)=6 \cdot 4 \cdot 6+4 \cdot 2=152$.
(e) Let $V(x)=f(f(x))$. Compute $V^{\prime}(3)$.

Solution: Again, by the chain rule, $V^{\prime}(x)=f^{\prime}(f(x)) \cdot f^{\prime}(x) \cdot 2$, so $V^{\prime}(3)=$ $f^{\prime}(f(3)) \cdot f^{\prime}(3) \cdot 2=f^{\prime}(1) \cdot f^{\prime}(3)=6 \cdot 2=12$.
(f) Let $W(x)=g(2 x) \div f(x)$. Compute $W^{\prime}(1)$.

Solution: By the quotient rule, $W^{\prime}(x)=\left[g^{\prime}(2 x) \cdot 2 \cdot f(x)-g(2 x)\right.$. $\left.f^{\prime}(x)\right] \div(f(x))^{2}$ so $W^{\prime}(1)=\left[g^{\prime}(2) \cdot 2 \cdot f(1)-g(2) \cdot f^{\prime}(1)\right] \div(f(1))^{2}=$ $(4 \cdot 2 \cdot 4-3 \cdot 6) \div 16=(32-18) / 16=7 / 8$.
(g) Let $Z(x)=f\left(x^{2}+g(x)\right)$. Compute $Z^{\prime}(1)$.

Solution: Again by the chain rule, $Z^{\prime}(x)=f^{\prime}\left(x^{2}+g(x)\right) \cdot \frac{d}{d x}\left(x^{2}+g(x)\right)=$ $f^{\prime}\left(x^{2}+g(x)\right) \cdot\left(2 x+g^{\prime}(x)\right)$, so $Z^{\prime}(1)=f^{\prime}(1+g(1)) \cdot\left(2+g^{\prime}(1)\right)=f^{\prime}(3)$. $(2+5)=2 \cdot 7=14$.
6. (25 points) Compute the following derivatives. There is no need to simplify except in part (c).
(a) Let $f(x)=\left(x+\sqrt{1+x^{3}}\right)$. Find $\frac{d}{d x} f(x)$.

Solution: Note that $\sqrt{x^{3}}=x^{3 / 2}$, so we differentiate it using the power rule and chain rule: $f^{\prime}(x)=1+\frac{1}{2}\left(1+x^{3}\right)^{-1 / 2} \cdot 3 x^{2}=1+\frac{3 x^{2}}{2 \sqrt{1+x^{3}}}$.
(b) Let $g(x)=x^{3} / \sqrt{1+x^{2}}$. What is $g^{\prime}(x)$?

Solution: Use the quotient rule to get $g^{\prime}(x)=\left[3 x^{2} \sqrt{1+x^{2}}-\frac{1}{2}(1+\right.$ $\left.\left.x^{2}\right)^{-1 / 2}\left(x^{3}\right)\right] \div\left(1+x^{2}\right)=\frac{3 x^{2} \sqrt{1+x^{2}}-x^{4} / \sqrt{1+x^{2}}}{1+x^{2}}$.
(c) Find $\frac{d}{d x}\left((x+2) \cdot(2 x-1)^{2}\right)$.

Solution: By the product rule, $\left.\frac{d}{d x}\left((x+2) \cdot(2 x-1)^{2}\right)=1 \cdot 2(2 x-1)^{2}\right)+$ $2(2 x-1) \cdot 2(x+2)=12 x^{2}+8 x-7=(2 x-1)(6 x+7)$.
(d) Find $\frac{d}{d x} \sqrt{\frac{2 x+1}{3 x^{2}-2}}$.

Solution: By the chain and quotient rules, $\frac{d}{d x} \frac{2 x+1}{3 x^{2}-2}=\frac{1}{2}\left(\frac{2 x+1}{3 x^{2}-2}\right)^{-1 / 2}$. $\frac{2\left(3 x^{2}-2\right)-6 x(2 x+1)}{\left(3 x^{2}-2\right)^{2}}$.
(e) Find $\frac{d}{d t}\left(t-1 / t^{2}\right)^{3}$.

Solution: By the chain rule, $\frac{d}{d t}\left(t-1 / t^{2}\right)^{3}=3\left(t-1 / t^{2}\right)^{2} \cdot\left(1+2 t^{-3}\right)$.
7. (40 points) Consider the function

$$
f(x)=\sqrt{\frac{\left(x^{2}-1\right)(3 x+1)}{\left(2 x^{2}-8\right)(x+1)}}
$$

Use the Test Interval Technique to find the (implied) domain of $f(x)$.
Solution: Let $r(x)$ denote the part inside the radical. So we need to solve the inequality $r(x) \geq 0$. Notice first that r is not in factored form. Factoring reveals that the numerator and denominator have common factors. Thus

$$
r(x)=\frac{(x-1)(x+1)(3 x+1)}{2(x-2)(x+2)(x+1)}
$$

We can cancel the common factors $x+1$ with the understanding that we are (very slightly by including -1) enlarging the domain of $r: r(x)=\frac{(x-1)(3 x+1)}{2(x-2)(x+2)}$. Next find the branch points. These are the points at which r can change signs. Precisely, they are the zeros of the numerator and of the denominator. They are $-2,-1 / 3,1,2$. Again we select test points and find the sign of r at of these points to get the sign chart.

Recall that we are solving $r(x) \geq 0$. The solution to $r(x)>0$ is easy. It is the union of the open intervals with the + signs, $(-\infty,-2) \cup(-1 / 3,1) \cup$ $(2, \infty)$. It remains to solve $r(x)=0$ and attach these solutions to what we have. The zeros of r are 1 and $-1 / 3$. So the solution to $r(x) \geq 0$ is $(-\infty,-2) \cup[-1 / 3,1] \cup(2, \infty)$. Notice that the branch point -1 is not included since r is not defined at -1 . Thus, the domain of the function $f(x)$ is $(-\infty,-2) \cup[-1 / 3,1] \cup(2, \infty)$.
8. (7 points) Suppose $f(x)$ satisfies $f(3)=2$ and the line tangent to the graph of f at the point $(3,2)$ is $2 y+3 x=13$. What is $f^{\prime}(3)$?

Solution: The slope of the given line is $-3 / 2$, so $f^{\prime}(3)=-3 / 2$.

