Calculus

October 19, 2006 Name

The total number of points available is 148. Throughout this test, **show your work**.

- 1. (9 points) Let $f(x) = x^3 2x 3$.
 - (a) Compute f'(x)
 - (b) What is f'(2)?
 - (c) Use the information in (b) to find an equation for the line tangent to the graph of f at the point (2, f(2)).
- 2. (12 points) Consider the function f defined by:

$$f(x) = \begin{cases} x + x^3 & \text{if } x < 1\\ 2 & \text{if } x = 1\\ 2x^{1/2} & \text{if } x > 1 \end{cases}$$

- (a) Is f continuous at x = 1?
- (b) What is the slope of the line tangent to the graph of f at the point (4, 4)?

(c) Find f'(-3)

- 3. (15 points) If a ball is thrown vertically upward from the roof of 212 foot building with a velocity of 48 ft/sec, its height after t seconds is $s(t) = 212 + 48t 16t^2$.
 - (a) What is the height the ball at time t = 0?
 - (b) What is the velocity of the ball at the time it reaches its maximum height?
 - (c) At what time is the velocity zero?
 - (d) What is the maximum height the ball reaches?
 - (e) What is the velocity of the ball when it hits the ground (height 0)?
- 4. (10 points) The cost of producing x units of stuffed alligator toys is $C(x) = -0.003x^2 + 6x + 6000$ for $0 \le x \le 1000$.
 - (a) Find the marginal cost at the production level of 1000 units.
 - (b) Find the (incremental) cost of producing the 1000th toy.

5. (30 points) Consider the table of values given for the functions f, f', g, and g':

x	f(x)	f'(x)	g(x)	g'(x)
0	2	1	6	2
1	4	6	2	5
2	6	4	3	4
3	1	2	5	3
4	3	5	2	6
5	5	3	4	1
6	0	3	2	4

(a) Let L(x) = f(x) + g(x). Compute L'(2).

(b) Let $U(x) = g \circ g(x)$. Compute U(1).

- (c) Let $K(x) = g(x^2) \cdot f(x)$. Compute K(2).
- (d) Again, $K(x) = g(x^2) \cdot f(x)$. Compute K'(2).
- (e) Let V(x) = f(f(x)). Compute V'(3).
- (f) Let $W(x) = g(2x) \div f(x)$. Compute W'(1).
- (g) Let $Z(x) = f(x^2 + g(x))$. Compute Z'(1).

6. (25 points) Compute the following derivatives. There is no need to simplify except in part (c).

(a) Let $f(x) = (x + \sqrt{1 + x^3})$. Find $\frac{d}{dx}f(x)$.

(b) Let
$$g(x) = x^3/\sqrt{1+x^2}$$
. What is $g'(x)$?

(c) Find
$$\frac{d}{dx}((x+2)\cdot(2x-1)^2)$$
.

(d) Find
$$\frac{d}{dx}\sqrt{\frac{2x+1}{3x^2-2}}$$
.

(e) Find $\frac{d}{dt}(t - 1/t^2)^3$.

$$f(x) = \sqrt{\frac{(x^2 - 1)(3x + 1)}{(2x^2 - 8)(x + 1)}}.$$

Use the Test Interval Technique to find the (implied) domain of f(x).

8. (7 points) Suppose f(x) satisfies f(3) = 2 and the line tangent to the graph of f at the point (3, 2) is 2y + 3x = 13. What is f'(3)?