July 21, 2005
Name
The total number of points available is 122. Throughout this test, show your work.

1. (10 points) Consider the parabola $f(x)=3 x^{2}+2 x+2$.
(a) What is the slope of the line tangent to the graph of f at the point $(0,2)$?

Solution: $f^{\prime}(x)=6 x+2$ so $f^{\prime}(0)=2$. The slope of the tangent line is 2.
(b) Write an equation of this tangent line in the form $y=m x+b$.

Solution: Since the slope is 2 , we can use the point slope form to get $y-2=2(x-0)=2 x$, so $y=2 x+2$.
2. (12 points) The point $P(3,19)$ lies on the curve $y=x^{2}+x+7$. If Q is the point $\left(x, x^{2}+x+7\right)$, find the slope of the secant line $P Q$ for the following values of x.
(a) If $x=3.1$, the slope of $P Q$ is:

Solution: Using a calculator, $\left(3.1^{2}+3.1+7-19\right) \div(3.1-3)=7.1$
(b) If $x=3.01$, the slope of $P Q$ is:

Solution: Using a calculator, $\left(3.01^{2}+3.01+7-19\right) \div(3.01-3)=7.01$
(c) If $x=2.9$, the slope of $P Q$ is:

Solution: Using a calculator, $\left(2.9^{2}+2.9+7-19\right) \div(2.9-3)=6.9$
(d) If $x=2.99$, the slope of $P Q$ is:

Solution: Using a calculator, $\left(2.99^{2}+2.99+7-19\right) \div(2.99-3)=6.99$
(e) Based on the above results, guess the slope of the tangent line to the curve at $P(3,19)$.
Solution: The obvious guess is $y^{\prime}=7$ at $x=3$ and that is true since $y^{\prime}=2 x+1$ for any x.
3. (10 points) Intermediate Value Theorem. Recall that the IVT asserts the following: If f is a continuous function on the interval $[a, b]$ and M is a number between $f(a)$ and $f(b)$, then there exists a number c satisfying $a \leq c \leq b$ and $f(c)=M$. For this problem let $f(x)=\sqrt{2 x-2}$ and let $[a, b]=[1,3]$. Finally, suppose $M=1$. Find the number c whose existence is guaranteed by the IVT.

Solution: We need to solve the equation $\sqrt{2 x-2}=1$ for x. Square both sides to get $2 x-2=1$, from which it follows that $x=3 / 2$.
4. (15 points) Let $f(x)=2 / x$.
(a) Construct $\frac{f(3+h)-f(3)}{h}$

Solution: $f(3+h)=2 /(3+h)$ and of course $f(3)=2 / 3$, so $\frac{f(3+h)-f(3)}{h}=$ $(2 /(3+h)-2 / 3) \div h$.
(b) Simplify and take the limit of the expression in (a) as h approaches 0 to find $f^{\prime}(3)$.

Solution: Take the limit of $\frac{f(3+h)-f(3)}{h}=(2 /(3+h)-2 / 3) \div h$ as $h \rightarrow 0$ to get $f^{\prime}(3)=-2 / 9$. You can check this answer using the power rule: $f(x)=2 / x=2 x^{-1}$, so $f^{\prime}(x)=2(-1) x^{-2}$.
(c) Use the information found in (b) to find an equation for the line tangent to the graph of f at the point $(3,2 / 3)$.

Solution: Use the point-slope form to get $y-2 / 3=-2 / 9(x-3)$ which reduces to $y=-2 x / 9+4 / 3$.
5. (30 points) Recall that \sqrt{x} is a well-defined real number if and only if $x \geq 0$. Use this fact to find the domain of the function $g(x)$ defined by

$$
g(x)=\sqrt{(x-5)(x-3)(x)(x+1)^{2}(x+4)}
$$

It's important to show all your work, including the test points and the matrix of values of the factors at the test points.

Solution: Let $u(x)=(x-5)(x-3)(x)(x+1)^{2}(x+4)$. We need to solve the inequality $u(x) \geq 0$. To this end, note that the roots of $u(x)=0$ are $x=5, x=3, x=0, x=-1$, and $x=-4$. These breakpoints split the line into six intervals, $(\infty,-4),(-4,-1),(-1,0),(0,3),(3,5)$, and $(5, \infty)$. Using test points $-5,-2,-1 / 2,1,4$, and 6 , we find that $u(-5)>0, u(-2)<0, u(-1 / 2)<$ $0, u(1)>0, u(4)<0, u(6)>0$. Notice that although $x=-1$ is the endpoint of two abutting intervals over which g is negative, $g(-1)=0$. Hence we can write the domain of g as $(\infty,-4] \cup[0,3] \cup[5, \infty) \cup\{-1\}$.
6. (15 points) Let $F(x)=f\left(x^{3}\right)$ and $G(x)=(f(x))^{3}$. You also know that $a^{2}=10, f(a)=3, f^{\prime}(a)=14, f^{\prime}\left(a^{3}\right)=2$.
(a) Find $F^{\prime}(a)$.

Solution: By the chain rule with f as the outside function and x^{3} as the inside function, $F^{\prime}(x)=f^{\prime}\left(x^{3}\right) \cdot 3 x^{2}$. Therefore $F^{\prime}(a)=2 \cdot 3 \cdot 10=60$.
(b) Find $G^{\prime}(a)$.

Solution: By the chain rule with x^{3} as the outside function and f as the inside function, $G^{\prime}(x)=3(f(x))^{2} \cdot f^{\prime}(x)$. Therefore $G^{\prime}(a)=3 f(a) f^{\prime}(a)=$ $3 \cdot 9 \cdot 14=378$.
7. (30 points) Compute the following derivatives.
(a) Let $f(x)=x^{2}+x^{-\frac{2}{3}}$. Find $\frac{d}{d x} f(x)$.

Solution: $\frac{d}{d x} f(x)=2 x-2 x^{-\frac{5}{3}} / 3=2 x-\frac{2}{3 x^{\frac{5}{3}}}$.
(b) Let $g(x)=\sqrt{x^{3}+x+4}$. What is $g^{\prime}(x)$?

Solution: $g^{\prime}(x)=1 / 2\left(x^{3}+x+4\right)^{-1 / 2} \cdot\left(3 x^{2}+1\right)=\frac{3 x^{2}+1}{2 \sqrt{x^{3}+x+4}}$.
(c) Find $\frac{d}{d x}\left((3 x+1)^{2} \cdot\left(4 x^{2}-1\right)\right)$
(d) Let $f(x)=\left(2 x^{2}+1\right)^{4}$. Find $f^{\prime \prime}(x)$.

Solution: Note that, by the chain rule, $f^{\prime}(x)=4\left(2 x^{2}+1\right)^{3} \cdot 4 x=$ $16 x\left(2 x^{2}+1\right)^{3}$. To find $f^{\prime \prime}(x)$, we must use the chain rule and the product rule. Thus $f^{\prime \prime}(x)=16\left(2 x^{2}+1\right)^{3}+3\left(2 x^{2}+1\right)^{2} \cdot 4 x \cdot 16 x=16\left(2 x^{2}+1\right)^{3}+$ $192 x^{2}\left(2 x^{2}+1\right)^{2}=144 x^{3}+72 x^{2}-10 x-6$.
(e) Find $\frac{d}{d t}\left(t^{3}+1 / t\right)^{2}$.

Solution: $\frac{d}{d t}\left(t^{3}+1 / t\right)^{2}=2\left(t^{3}+t^{-1}\right)\left(3 t^{2}-t^{-2}\right)$.

