July 21, 2005
Name
The total number of points available is 122 . Throughout this test, show your work.

1. (10 points) Consider the parabola $f(x)=3 x^{2}+2 x+2$.
(a) What is the slope of the line tangent to the graph of f at the point $(0,2)$?
(b) Write an equation of this tangent line in the form $y=m x+b$.
2. (12 points) The point $P(3,19)$ lies on the curve $y=x^{2}+x+7$. If Q is the point $\left(x, x^{2}+x+7\right)$, find the slope of the secant line $P Q$ for the following values of x.
(a) If $x=3.1$, the slope of $P Q$ is:
(b) If $x=3.01$, the slope of $P Q$ is:
(c) If $x=2.9$, the slope of $P Q$ is:
(d) If $x=2.99$, the slope of $P Q$ is:
(e) Based on the above results, guess the slope of the tangent line to the curve at $P(3,19)$.
3. (10 points) Intermediate Value Theorem. Recall that the IVT asserts the following: If f is a continuous function on the interval $[a, b]$ and M is a number between $f(a)$ and $f(b)$, then there exists a number c satisfying $a \leq c \leq b$ and $f(c)=M$. For this problem let $f(x)=\sqrt{2 x-2}$ and let $[a, b]=[1,3]$. Finally, suppose $M=1$. Find the number c whose existence is guaranteed by the IVT.
4. (15 points) Let $f(x)=2 / x$.
(a) Construct $\frac{f(3+h)-f(3)}{h}$
(b) Simplify and take the limit of the expression in (a) as h approaches 0 to find $f^{\prime}(3)$.
(c) Use the information found in (b) to find an equation for the line tangent to the graph of f at the point $(3,2 / 3)$.
5. (30 points) Recall that \sqrt{x} is a well-defined real number if and only if $x \geq 0$. Use this fact to find the domain of the function $g(x)$ defined by

$$
g(x)=\sqrt{(x-5)(x-3)(x)(x+1)^{2}(x+4)} .
$$

It's important to show all your work, including the test points and the matrix of values of the factors at the test points.
6. (15 points) Let $F(x)=f\left(x^{3}\right)$ and $G(x)=(f(x))^{3}$. You also know that $a^{2}=10, f(a)=3, f^{\prime}(a)=14, f^{\prime}\left(a^{3}\right)=2$.
(a) Find $F^{\prime}(a)$.
(b) Find $G^{\prime}(a)$.
7. (30 points) Compute the following derivatives.
(a) Let $f(x)=x^{2}+x^{-\frac{2}{3}}$. Find $\frac{d}{d x} f(x)$.
(b) Let $g(x)=\sqrt{x^{3}+x+4}$. What is $g^{\prime}(x)$?
(c) Find $\frac{d}{d x}\left((3 x+1)^{2} \cdot\left(4 x^{2}-1\right)\right)$
(d) Let $f(x)=\left(2 x^{2}+1\right)^{4}$. Find $f^{\prime \prime}(x)$.
(e) Find $\frac{d}{d t}\left(t^{3}+1 / t\right)^{2}$.

