October 13, 2004 Name
The total number of points available is 135. Throughout this test, show your work.

1. (15 points) Let $f(x)=\sqrt{x^{3}+1}$.
(a) Compute $f^{\prime}(x)$
(b) What is $f^{\prime}(2)$?
(c) Use the information in b. to find an equation for the line tangent to the graph of f at the point $(2, f(2))$.
2. (12 points) Consider the function f defined by:

$$
f(x)= \begin{cases}3 x-x^{3} & \text { if } x<1 \\ 2 & \text { if } x=1 \\ 2 x^{2 / 3} & \text { if } x>1\end{cases}
$$

(a) Is f continuous at $x=1$?
(b) What is the slope of the line tangent to the graph of f at the point $(8,8)$?
(c) Find $f^{\prime}(-3)$
3. (15 points) KAM Industries makes ovens. The daily cost in dollars of producing x ovens is given by

$$
C(x)=-0.06 x^{2}+120 x+5000,
$$

for x in the range 0 to 2000 .
(a) What is the actual cost of manufacturing the $101^{\text {st }}$ oven? ...the $201^{\text {st }}$ oven?
(b) Find the marginal cost function $C^{\prime}(x)$. What are $C^{\prime}(100)$ and $C^{\prime}(200)$?
(c) Find the average cost function $\bar{C}(x)$.
(d) Find the marginal average cost function $\bar{C}^{\prime}(x)$.
4. (36 points) Consider the table of values given for the functions f, f^{\prime}, g, and g^{\prime} :

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
0	2	1	6	2
1	4	6	2	5
2	6	4	3	4
3	1	2	5	3
4	3	5	2	6
5	5	3	4	1
6	0	3	2	4

(a) Let $K(x)=f(x) \cdot g(x)$. Compute $K^{\prime}(3)$
(b) Let $L(x)=f(x) / g(x)$. Compute $L^{\prime}(2)$.
(c) Let $U(x)=f \circ g(x)$. Compute $U^{\prime}(1)$.
(d) Let $V(x)=g \circ f(x)$. Compute $V^{\prime}(5)$.
(e) Let $W(x)=f\left(x^{2}-g(x)\right)$. Compute $W^{\prime}(2)$.
(f) Let $Z(x)=g(x-f(x))$. Compute $Z^{\prime}(3)$.
5. (30 points) Compute the following derivatives.
(a) Let $f(x)=x^{-2}+\sqrt{x}$. Find $\frac{d}{d x} f(x)$.
(b) Let $g(x)=\sqrt{x^{4}-x^{2}}$. What is $g^{\prime}(x)$?
(c) Find $\frac{d}{d x}\left((4 x+1)^{2} \cdot\left(2 x^{3}-1\right)\right)$.
(d) Find $\frac{d}{d x} \frac{2 x^{2}+1}{x-2}$.
(e) Find $\frac{d}{d t}\left(t^{2}+1 / t\right)^{4}$.
6. (10 points) Let $f(x)=\sqrt{2 x-3}$. The chain rule can be applied to find that $f^{\prime}(x)=\frac{1}{2}(2 x-3)^{-1 / 2} \cdot 2=1 / \sqrt{2 x-3}$. Use the limit definition of derivative to verify this fact.
7. (12 points) Intermediate Value Theorem. Recall that the IVT asserts the following: If f is a continuous function on the interval $[a, b]$ and M is a number between $f(a)$ and $f(b)$, then there exists a number c satisfying $a \leq c \leq b$ and $f(c)=M$. For this problem let $f(x)=\sqrt{2 x-5}$ and let $[a, b]=[3,15]$. Finally, suppose $M=4$. Find the number c whose existence is guaranteed by IVT.

