October 13, 2004 Name

The total number of points available is 135. Throughout this test, **show your work**.

- 1. (15 points) Let $f(x) = \sqrt{x^3 + 1}$.
 - (a) Compute f'(x)
 - (b) What is f'(2)?
 - (c) Use the information in b. to find an equation for the line tangent to the graph of f at the point (2, f(2)).
- 2. (12 points) Consider the function f defined by:

$$f(x) = \begin{cases} 3x - x^3 & \text{if } x < 1\\ 2 & \text{if } x = 1\\ 2x^{2/3} & \text{if } x > 1 \end{cases}$$

- (a) Is f continuous at x = 1?
- (b) What is the slope of the line tangent to the graph of f at the point (8, 8)?

(c) Find f'(-3)

3. (15 points) KAM Industries makes ovens. The daily cost in dollars of producing x ovens is given by

 $C(x) = -0.06x^2 + 120x + 5000,$

for x in the range 0 to 2000.

(a) What is the actual cost of manufacturing the $101^{\rm st}$ oven? ...the $201^{\rm st}$ oven?

(b) Find the marginal cost function C'(x). What are C'(100) and C'(200)?

(c) Find the average cost function $\overline{C}(x)$.

(d) Find the marginal average cost function $\overline{C}'(x)$.

4. (36 points) Consider the table of values given for the functions f, f', g, and g':

$x \mid$	f(x)	f'(x)	g(x)	g'(x)
0	2	1	6	2
1	4	6	2	5
2	6	4	3	4
3	1	2	5	3
4	3	5	2	6
5	5	3	4	1
6	0	3	2	4

(a) Let $K(x) = f(x) \cdot g(x)$. Compute K'(3)

(b) Let L(x) = f(x)/g(x). Compute L'(2).

(c) Let $U(x) = f \circ g(x)$. Compute U'(1).

- (d) Let $V(x) = g \circ f(x)$. Compute V'(5).
- (e) Let $W(x) = f(x^2 g(x))$. Compute W'(2).
- (f) Let Z(x) = g(x f(x)). Compute Z'(3).

- 5. (30 points) Compute the following derivatives.
 - (a) Let $f(x) = x^{-2} + \sqrt{x}$. Find $\frac{d}{dx}f(x)$.

(b) Let $g(x) = \sqrt{x^4 - x^2}$. What is g'(x)?

(c) Find $\frac{d}{dx}((4x+1)^2 \cdot (2x^3-1)).$

(d) Find $\frac{d}{dx} \frac{2x^2+1}{x-2}$.

(e) Find $\frac{d}{dt}(t^2 + 1/t)^4$.

6. (10 points) Let $f(x) = \sqrt{2x-3}$. The chain rule can be applied to find that $f'(x) = \frac{1}{2}(2x-3)^{-1/2} \cdot 2 = 1/\sqrt{2x-3}$. Use the limit definition of derivative to verify this fact.

7. (12 points) Intermediate Value Theorem. Recall that the IVT asserts the following: If f is a continuous function on the interval [a, b] and M is a number between f(a) and f(b), then there exists a number c satisfying $a \le c \le b$ and f(c) = M. For this problem let $f(x) = \sqrt{2x-5}$ and let [a, b] = [3, 15]. Finally, suppose M = 4. Find the number c whose existence is guaranteed by IVT.