March 5, $2004 \quad$ Name
The total number of points available is 120. Throughout this test, show your work.

1. (15 points) Let $p(x)=x^{2}-4 x+5$.
(a) Compute $p^{\prime}(x)$

Solution: $p^{\prime}(x)=2 x-4$.
(b) Compute $p^{\prime \prime}(x)$

Solution: $p^{\prime \prime}(x)=2$
(c) Use the information in a. to find an equation for the line tangent to the graph of p at the point $(1,2)$.
Solution: $y-2=p^{\prime}(1)(x-1)=-2(x-1)$, so $y=-2 x+4$.
2. (15 points) Intermediate Value Theorem. Recall that the IVT asserts the following: If f is a continuous function on the interval $[a, b]$ and M is a number between $f(a)$ and $f(b)$, then there exists a number c satisfying $a \leq c \leq b$ and $f(c)=M$. For this problem let $f(x)=\sqrt{4 x-3}$ and let $[a, b]=[1,7]$. Finally, suppose $M=2$. Find the number c whose existence is guaranteed by IVT.
Solution: We need to solve the equation $\sqrt{4 x-3}=2$ for x. Square both sides to get $4 x-3=4$, from which it follows that $x=7 / 4$.
3. (15 points) The total weekly cost in dollars incurred by the Lincoln Record Company in pressing x playing records is given by $C(x)=2000+3 x-0.01 x^{2}$ for x in the range 0 to 6000 .
(a) Find the marginal cost function $C^{\prime}(x)$.

Solution: $C^{\prime}(x)=3-0.02 x$
(b) Find the average cost function $\bar{C}(x)$.

Solution: $\bar{C}(x)=\frac{2000+3 x-0.01 x^{2}}{x}=\frac{2000}{x}+3-0.01 x$.
(c) Find the marginal average cost function $\bar{C}^{\prime}(x)$.

Solution: $\bar{C}^{\prime}(x)=-2000 x^{-2}-0.01$.
(d) Interpret your results in (c). Is the average cost growing or falling as the company produces more units?
Solution: The function $\bar{C}^{\prime}(x)=-2000 x^{-2}-0.01$ is negative throughout its domain. This means that the average cost decreases the more records are produced.
4. (30 points) Consider the table of values given for the functions f, f^{\prime}, g, and g^{\prime} :

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
0	2	1	6	2
1	4	6	1	5
2	6	4	3	4
3	1	2	5	3
4	3	5	2	6
5	5	3	4	1
6	0	3	2	4

(a) Let $K(x)=f(x) \cdot g(x)$. Compute $K^{\prime}(2)$

Solution: $K^{\prime}(x)=f^{\prime}(x) \cdot g(x)+g^{\prime}(x) f(x)$, so $K^{\prime}(2)=f^{\prime}(2) \cdot g(2)+$ $g^{\prime}(2) f(2)=4 \dot{3}+4 \dot{6}=36$.
(b) Let $L(x)=f(x) / g(x)$. Compute $L^{\prime}(1)$.

Solution: $L^{\prime}(x)=\left(f^{\prime}(x) g(x)-g^{\prime}(x) f(x)\right) \div(g(x))^{2}$, so $L^{\prime}(1)=\left(f^{\prime}(1) g(1)-\right.$ $\left.g^{\prime}(1) f(1)\right) \div(g(1))^{2}=(6 \cdot 1-5 \cdot 4) \div 1^{2}=-14$.
(c) Let $U(x)=f \circ g(x)$. Compute $U^{\prime}(4)$.

Solution: By the chain rule, $U^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)$, so $U^{\prime}(4)=f^{\prime}(g(4))$. $g^{\prime}(4)=f^{\prime}(2) \cdot g^{\prime}(4)=4 \cdot 6=24$.
(d) Let $V(x)=g \circ f(x)$. Compute $V^{\prime}(5)$.

Solution: Again, by the chain rule, $V^{\prime}(x)=g^{\prime}(f(x)) \cdot f^{\prime}(x)$, so $V^{\prime}(5)=$ $g^{\prime}(f(5)) \cdot f^{\prime}(5)=g^{\prime}(5) \cdot f^{\prime}(5)=1 \cdot 3=3$.
(e) Let $W(x)=f\left(x^{2}\right)$. Compute $W^{\prime}(2)$.

Solution: Again by the chain rule, $W^{\prime}(x)=f^{\prime}\left(x^{2}\right) \cdot 2 x$, so $W^{\prime}(2)=$ $f^{\prime}(4) \cdot 4=5 \cdot 4=20$
(f) Let $Z(x)=g(x f(x))$. Compute $Z^{\prime}(3)$.

Solution: Again by the chain rule and the product rule, $Z^{\prime}(x)=g^{\prime}(x f(x))$. $\frac{d}{d x} x f(x)=g^{\prime}(x f(x)) \cdot\left(1 \cdot f(x)+x f^{\prime}(x)\right)$, so $Z^{\prime}(3)=g^{\prime}(3 f(3)) \cdot(1 \cdot f(3)+$ $\left.3 f^{\prime}(3)\right)=g^{\prime}(3 \cdot 1) \cdot(1 \cdot 1+3 \cdot 2)=3(1+6)=21$.
5. (25 points) Compute the following derivatives.
(a) Let $f(x)=x^{2}+x^{-\frac{1}{2}}$. Find $\frac{d}{d x} f(x)$.

Solution: $f^{\prime}(x)=2 x-\frac{1}{2} x^{-\frac{3}{2}}$.
(b) Let $g(x)=\sqrt{x^{4}+4}$. What is $g^{\prime}(x)$?

Solution: $g^{\prime}(x)=\frac{1}{2}\left(x^{4}+4\right)^{-\frac{1}{2}} \cdot 4 x^{3}=2 x^{3} \div \sqrt{x^{4}+4}$.
(c) Find $\frac{d}{d x}\left((3 x+1)^{2} \cdot\left(4 x^{3}-1\right)\right)$.

Solution: By the product rule, $\frac{d}{d x}\left((3 x+1)^{2} \cdot\left(4 x^{3}-1\right)\right)=2(3 x+1) \cdot 3$. $\left(4 x^{3}-1\right)+12 x^{2}(3 x+1)^{2}=6(3 x+1)\left(10 x^{3}+2 x^{2}-1\right)$.
(d) Find $\frac{d}{d x} \frac{2 x^{2}+1}{x-2}$.

Solution: By the quotient rule, $\frac{d}{d x} \frac{2 x^{2}+1}{x-2}=\frac{4 x(x-2)-1\left(2 x^{2}+1\right)}{(x-2)^{2}}=\frac{2 x^{2}-8 x-1}{x^{2}-4 x+4}$.
(e) Find $\frac{d}{d t}\left(t^{2}+1 / t\right)^{3}$.

Solution: By the chain rule, $\frac{d}{d t}\left(t^{2}+1 / t\right)^{3}=3\left(t^{2}+1 / t\right)^{2} \cdot\left(2 t-t^{-2}\right)$.
6. (10 points) Let $f(x)=2 / x$. Use the limit definition of derivative to find $f^{\prime}(x)$.

Solution: We need to compute $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$. Thus,

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{2 /(x+h)-2 / x}{h} & =\lim _{h \rightarrow 0} \frac{2 /(x+h)-2 / x}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x-2(x+h)}{x(x+h) h} \\
& =\lim _{h \rightarrow 0} \frac{-2 h}{x(x+h) h} \\
& =\lim _{h \rightarrow 0} \frac{-2}{x(x+h)} \\
& =\frac{-2}{x^{2}}
\end{aligned}
$$

7. (10 points) Consider the function f defined by:

$$
f(x)= \begin{cases}2 x^{2}-3 x & \text { if } x<1 \\ 4 & \text { if } x=1 \\ \sqrt{x-1} & \text { if } x>1\end{cases}
$$

(a) What is the slope of the line tangent to the graph of f at the point $(5,2)$?

Solution: To find $f^{\prime}(5)$ first note that when x is near $5, f(x)=(x-1)^{1 / 2}$ so $f^{\prime}(x)=\frac{1}{2}(x-1)^{-1 / 2}$. Thus, $f^{\prime}(5)=\frac{1}{2}\left(4^{-1 / 2}\right)=\frac{1}{2} \frac{1}{2}=\frac{1}{4}$.
(b) Find $f^{\prime}(-3)$

Solution: To find $f^{\prime}(-3)$, we must differentiate the part of f defined for $x<1$. In this area, $f^{\prime}(x)=4 x-3$, so $f^{\prime}(-3)=4(-3)-3=-15$

