March 7, 2003

Name

The first 6 problems count 5 points each and the final 4 count as marked. The total number of points available is 128 .
Multiple choice section. Circle the correct choice. You do not need to show your work on these problems.

1. Questions (a) through (e) refer to the graph of the function f given below.

(a) $\lim _{x \rightarrow 1} f(x)=$
(A) 0
(B) 1
(C) 2
(D) 4
(E) does not exist

Solution: B. The limit is 1 by the blotter test.
(b) $\lim _{x \rightarrow 2^{+}} f(x)=$
(A) 0
(B) 1
(C) 2
(D) 4
(E) does not exist

Solution: C. Looking just at the part of the graph that lies to the right of 2 , we see that the right limit as x approaches 2 is 2 .
(c) A good estimate of $f^{\prime}(-1)$ is
(A) -1
(B) 0
(C) 1
(D) 2
(E) there is no good estimate

Solution: A. The slope of the tangent line is certainly negative, and -1 is the only negative option.
(d) A good estimate of $f^{\prime}(-2)$ is
(A) -1
(B) 0
(C) 1
(D) 2
(E) there is no good estimate

Solution: B. The slope of the tangent line is close to zero, so 0 is a reasonable estimate.
(e) A good estimate of $f^{\prime}(3)$ is
(A) -1
(B) 0
(C) 1
(D) 2
(E) there is no good estimate

Solution: B. The function is horizontal at 3 so the slope of the tangent line is zero.
2. The line tangent to the graph of a function f at the point $(2,-3)$ on the graph also goes through the point $(-1,6)$. What is $f^{\prime}(2)$?
(A) -3
(B) -1
(C) 0
(D) 1
(E) 3

Solution: A. The derivative is the slope of the tangent line, so it is (6-$(-3)) \div(-1-2)=-3$
3. True-false questions. These count 2 points each.
(a) True or false. If f and g are differentiable and a and b are constants, then $\frac{d}{d x}[a f(x)+b g(x)]=a f^{\prime}(x)+b g^{\prime}(x)$.
Solution: True. This is just the rule that talks about the derivative of the sum and of a constant times a function.
(b) True or false. If $f^{\prime}(x)>0$ for each x in the interval $(-1,1)$, then f is increasing on $(-1,1)$.
Solution: True.
(c) True or false. If $f(a)<0, f(b)>0$, and $f(x)$ is continuous for each x in $[a, b]$, then there is at least one number c in (a, b) such that $f(c)=0$.
Solution: True. The Intermediate Value Theorem guarantees that there is at least one c in (a, b).
(d) True or false. The graph of a function cannot touch or intersect a horizontal asymptote to the graph of f.
Solution: False. There is nothing in the definition of horizontal asymptote that implies this.
(e) True or false. If f and g are differentiable, then $\frac{d}{d x}[f(x) g(x)]=f^{\prime}(x) g^{\prime}(x)$. Solution: False. Look up the product rule.
(f) True or false. If f and g are differentiable, then $\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{f^{\prime}(x)}{g^{\prime}(x)}$.

Solution: False. Look up the quotient rule.
(g) True or false. If f and g are differentiable and $h(x)=f \circ g$, then $h^{\prime}(x)=$ $f(g(x)) g^{\prime}(x)$.
Solution: False. Look up the chain rule.
4. (40 points) Suppose the functions f and g have derivatives at all their domain points and their values at certain points are given in the table. The next four problems refer to these functions f and g. Recall that, for example, the entry 1 in the first row and third column means that $f^{\prime}(0)=1$. In each case, a function $H(x)$ is given in terms of $f(x)$ and $g(x)$. You are asked to find $H^{\prime}(x)$ at the value of x provided.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
0	2	1	5	4
1	7	3	6	2
2	5	4	1	7
3	1	2	6	8
4	3	3	2	5
5	6	4	1	4
6	0	5	4	6
7	4	1	5	1

(a) The function H is defined by $H(x)=f\left(x^{2}\right)$. Find $H^{\prime}(1)$.
(A) 6
(B) 12
(C) 18
(D) 24
(E) 44

Solution: A. $H^{\prime}(x)=f^{\prime}\left(x^{2}\right) \cdot 2 x$, so $H^{\prime}(1)=f^{\prime}(1) \cdot 2=6$.
(b) The function J is defined by $J(x)=f(g(f(x)))$. Use the chain rule to find $J^{\prime}(2)$.
(A) 6
(B) 9
(C) 12
(D) 21
(E) 48

Solution: E. $J^{\prime}(x)=f^{\prime}(g(f(x))) \cdot g^{\prime}(f(x)) \cdot f^{\prime}(x)$, so $J^{\prime}(2)=f^{\prime}(g(f(2)))$. $g^{\prime}(f(2)) \cdot f^{\prime}(2)=f^{\prime}(1) \cdot g^{\prime}(5) \cdot f^{\prime}(2)=48$.
(c) The function K is defined by $K(x)=g(x) / x^{2}$. Use the quotient and chain rules to find $K^{\prime}(3)$.
(A) $-1 / 9$
(B) $1 / 3$
(C) $2 / 3$
(D) $4 / 9$
(E) $7 / 9$

Solution: D. Use the quotient rule to get 4/9.
(d) The function L is defined by $L(x)=(x+f(x))^{10}$. Use the chain and power rules to find $L^{\prime}(0)$.
(A) 0
(B) $10 \cdot 2^{9}$
(C) $5 \cdot 2^{9}$
(D) $10 \cdot 2^{10}$
(E) 2^{11}

Solution: D. $L^{\prime}(x)=10(x+f(x))^{9} \cdot\left(1+f^{\prime}(x)\right)=10 \cdot 2^{9} \cdot 2$.
(e) Use the information in the chart to find the y-intercept of the line tangent to the graph of f at the point $(2,5)$.
(A) -3
(B) 0
(C) 2
(D) 3
(E) 5

Solution: A. The slope of the line tangent to the graph of f at the point $(2,5)$ is given in the table as 4 , so the line is $y-5=4(x-2)$ which has y-intercept -3 .

On all the following questions, show your work.
5. (20 points) Let $k(x)=2 x^{2}$.
(a) Using the definition of derivative, find $k^{\prime}(x)$

Solution: The difference quotient is $(k(x+h)-k(x)) \div h=(2(x+$ $\left.\left.h)^{2}-2 x^{2}\right) \div h=2 x^{2}+4 x h+2 h^{2}-2 x^{2}\right) \div h=\left(4 x h+h^{2}\right) \div h$, so $k^{\prime}(x)=\lim _{h \rightarrow 0} 4 x h \div h=4 x$.
(b) Evaluate the function found above at $x=1$ to find $k^{\prime}(1)$.

Solution: From above, $k^{\prime}(1)=4$.
(c) Use the information above to find an equation for the line tangent to the graph of k at the point $(1, k(1))$.
Solution: $y-k(1)=y-2=4(x-1)$.
6. (20 points) A division of Moreken Industries manufactures microwave ovens. The daily cost (in dollars) of producing x ovens is given by $C(x)=-0.03 x^{2}+$ $120 x+15000$
(a) What is the actual cost of producing the 201st microwave oven?

Solution: $C(201)-C(200)=-0.03\left(201^{2}-200^{2}\right)+120(201-200)+$ $5000-5000=-12.03+120=\$ 107.97$.
(b) Find the marginal cost function $C^{\prime}(x)$.

Solution: $C^{\prime}(x)=-0.03 \cdot 2 x+120$
(c) Find $C^{\prime}(200)$.

Solution: $C^{\prime}(200)=-12+120=\$ 108.00$
(d) Find the average cost function $\bar{C}(x)$.

Solution: $\bar{C}(x)=\frac{-0.03 x^{2}+120 x+15000}{x}$.

