October 7, 1999

Name
The first five problems counts 6 points each and the others count as marked.
Multiple choice section. Circle the correct choice. You do not need to show your work on these problems.

1. Consider the function f defined by:

$$
f(x)= \begin{cases}|x+2| & \text { if } x \leq 0 \\ 5-x^{2} & \text { if } x>0\end{cases}
$$

Find the three solutions to $f(x)=1$ and compute their sum.
(A) -4
(B) -2
(C) 0
(D) 2
(E) 6
2. Let $f(x)=1 / x$. What is the vaule of $\frac{f(x+2)-f(x)}{2}$?
(A) $-\frac{1}{x(x+2)}$
(B) $\frac{1}{x(x+2)}$
(C) $\frac{x}{x+2}$
(D) $-\frac{x}{x+2}$
(E) $x+2$
3. Let $f(x)=\sqrt{2 x}$. What is the value of $f(x+1)-f(x)$ in terms of x ?
(A) $\frac{2}{\sqrt{2 x+2}+\sqrt{2 x}}$
(B) $\frac{2}{\sqrt{2 x+1}+\sqrt{2 x}}$
(C) $\frac{1}{\sqrt{2 x+1}}$
(D) $\sqrt{2 x+2}$
(E) $\sqrt{2 x+2}-x$
4. Suppose the point $(2,5)$ belongs to the graph of a function g and $g^{\prime}(2)=4$. What is the y-intercept of the line tangent to the graph of g at the point $(2,5)$?
(A) -8
(B) -3
(C) 3
(D) 8
(E) 13
5. The line tangent to the graph of a function h at the point $(3,7)$ has a y intercept of 10 . What is $h^{\prime}(3)$?
(A) -7
(B) -4
(C) -1
(D) 1
(E) $17 / 3$
6. (20 points) Let

$$
f(x)= \begin{cases}2 x-3 & \text { if } x \leq 4 \\ 6-x & \text { if } x>4\end{cases}
$$

and let $g(x)=2 x$.
(a) Compute each of the following
i. $f \circ g(1) \quad f \circ g(1)=f(2)=1$
ii. $f \circ g(2) \quad f \circ g(2)=f(4)=5$
iii. $f \circ g(3) \quad f \circ g(3)=f(6)=0$
iv. $f \circ g(3.5) \quad f \circ g(3.5)=f(7)=-1$
(b) Find a symbolic representation of the composition $f \circ g(x)$, and simplify the representation.

$$
f \circ g(x)= \begin{cases}2(2 x)-3 & \text { if } 2 x \leq 4 \\ 6-2 x & \text { if } 2 x>4\end{cases}
$$

which is the same as

$$
f \circ g(x)= \begin{cases}4 x-3 & \text { if } x \leq 2 \\ 6-2 x & \text { if } x>2\end{cases}
$$

7. (25 points) Compute the limits requested.
(a) $\lim _{h \rightarrow 0} \frac{\sqrt{2+h}-\sqrt{2}}{h}$

Rationalize the numerator to get $\frac{(2+h)-2}{h(\sqrt{2+h}+\sqrt{2})}=\frac{h}{h(\sqrt{2+h}+\sqrt{2})}$
$=\frac{1}{(\sqrt{2+h}+\sqrt{2})}$, so the limit is just the value of the last expression at $h=0$, which is $\frac{1}{2 \sqrt{2}}$.
(b) $\lim _{x \rightarrow 3} \frac{x-3}{x^{3}-27}$

Factor the denominator to get $\frac{x-3}{(x-3)\left(x^{2}+3 x+9\right)}$. The $(x-3)$ factors can be removed to give $\lim _{x \rightarrow 3} \frac{1}{x^{2}+3 x+9}=1 / 27$.
(c) $\lim _{h \rightarrow 0} \frac{\frac{1}{3+h}-\frac{1}{3}}{h}$

Find a common denominator and simplify to get $\lim _{h \rightarrow 0} \frac{\frac{1}{3+h}-\frac{1}{3}}{h}$ $=\lim _{h \rightarrow 0} \frac{3-(3+h)}{h \cdot 3(3+h)}$ which is just $\lim _{h \rightarrow 0} \frac{-1}{3(3+h)}=-1 / 9$.
(d) $\lim _{x \rightarrow \infty} \frac{2 x^{3}-2 x^{2}+7}{4 x^{3}-10 x^{2}+x-27}$

Since the degrees of the numerator and denominator are the same, take the ratio of the coefficients of these highest power terms, $2 x^{3}$ and $4 x^{3}$ to get the result $\lim =1 / 2$.
(e) $\lim _{x \rightarrow-\infty} \frac{|x|-3}{3 x+5}$

Divide both numerator and denominator by x to get $\lim _{x \rightarrow-\infty} \frac{|x|-3}{3 x+5}=$ $\lim _{x \rightarrow-\infty} \frac{|x| / x-3 / x}{3 x / x+5 / x}$. This reduces to $\lim _{x \rightarrow-\infty} \frac{|x| / x}{3}$ whose value, for negative values of x, is $-1 / 3$.
8. (25 points) Find the following derivatives.
(a) $\frac{d}{d x} \sqrt{2 x^{3}-5 x+7}$

$$
\frac{d}{d x} \sqrt{2 x^{3}-5 x+7}=\frac{1}{2}\left(2 x^{3}-5 x+7\right)^{-\frac{1}{2}} \cdot\left(6 x^{2}-5\right)
$$

(b) $\frac{d}{d x}(2 x-1) \cdot\left(3 x^{2}+4 x\right)$

$$
\begin{aligned}
\frac{d}{d x}(2 x-1) \cdot\left(3 x^{2}+4 x\right) & =(2 x-1)(6 x+4)+\left(3 x^{2}+4 x\right) \cdot 2 \\
& =12 x^{2}+8 x-6 x-4+6 x^{2}+8 x \\
& =18 x^{2}+10 x-4
\end{aligned}
$$

Alternatively, multiply the two factors and differentiate the result.
(c) $\frac{d}{d x} \frac{2 x^{2}-1}{3 x+2}$

$$
\begin{aligned}
\frac{d}{d x} \frac{2 x^{2}-1}{3 x+2} & =\frac{4 x(3 x+2)-3\left(2 x^{2}-1\right)}{(3 x+2)^{2}} \\
& =\frac{12 x^{2}+8 x-6 x^{2}+3}{(3 x+2)^{2}} \\
& =\frac{6 x^{2}+8 x+3}{(3 x+2)^{2}}
\end{aligned}
$$

(d) $\frac{d}{d x} \sqrt{x^{2}-2 x+1}$

$$
\frac{d}{d x} \sqrt{x^{2}-2 x+1}=\frac{d}{d x} \sqrt{(x-1)^{2}}=\frac{d}{d x}|x-1|=\frac{|x-1|}{x-1}
$$

(e) $\frac{d}{d x}\left(x^{3}+3 x^{2}+3 x+1\right)^{1 / 3}$

$$
\frac{d}{d x}\left(x^{3}+3 x^{2}+3 x+1\right)^{1 / 3}=\frac{d}{d x}\left((x+1)^{3}\right)^{1 / 3}=\frac{d}{d x}(x+1)=1
$$

9. (20 points) Let $f(x)=\frac{1}{x}+x$.
(a) Compute $f(3.1) \quad f(3.1)=\frac{1}{3.1}+3.1 \approx 3.42$
(b) Compute $f(3+h) f(3+h)=\frac{1}{3+h}+3+h \approx 3.42$
(c) Compute $\frac{f(3+h)-f(3)}{h}$ and simplify, assuming $h \neq 0$.

$$
\begin{aligned}
\frac{f(3+h)-f(3)}{h} & =\frac{\frac{1}{3+h}+3+h-\left(\frac{1}{3}+3\right)}{h} \\
& =\frac{\frac{1}{3+h}-\frac{1}{3}+h}{h} \\
& =\frac{3-(3+h)}{h \cdot 3 \cdot(3+h)}+1 \\
& =-\frac{h}{3 h(3+h)}+1 \\
& =-\frac{1}{3(3+h)}+1
\end{aligned}
$$

(d) Take the limit of the expression in (c) as h approaches 0 to find $f^{\prime}(3)$.

The limit as h approaches 0 is $-\frac{1}{9}+1=\frac{8}{9}$.
(e) What is the slope of the line tangent to f at the point $\left(3,3 \frac{1}{3}\right)$.

Its the number we just calculated, $\frac{8}{9}$.
(f) Find an equation for the line tangent to the graph of f at the point $\left(3,3 \frac{1}{3}\right)$.

The equation is $y-3 \frac{1}{3}=\frac{8}{9}(x-3)$, which simplifies to $y=\frac{8}{9} x+\frac{2}{3}$.

