November 1, 2017
Name
The total number of points avail-
able is 152. Throughout this test, show your work.

1. (10 points) Let $f(x)=x^{3}-2 x-3$.
(a) Compute $f^{\prime}(x)$

Solution: $f^{\prime}(x)=3 x^{2}-2$
(b) What is $f^{\prime}(2)$?

Solution: $f^{\prime}(2)=3 \cdot 2^{2}-2=10$.
(c) Use the information in (b) to find an equation for the line tangent to the graph of f at the point $(2, f(2))$.
Solution: Since $f(2)=2^{3}-2 \cdot 2-3=1$, using the point-slope form leads to $y-1=f^{\prime}(2)(x-2)=10(x-2)$, so $y=10 x-19$.
2. (12 points) Consider the function f defined by:

$$
f(x)= \begin{cases}x+x^{3} & \text { if } x<1 \\ 2 & \text { if } x=1 \\ 2 x^{1 / 2} & \text { if } x>1\end{cases}
$$

(a) Is f continuous at $x=1$?

Solution: Yes, the limits from the left and right are both 2, and the value of f at 1 is 2 .
(b) What is the slope of the line tangent to the graph of f at the point $(4,4)$?

Solution: To find $f^{\prime}(4)$ first note that when x is near $8, f(x)=2 x^{1 / 2}$ so $f^{\prime}(x)=2 \frac{1}{2} x^{-1 / 2}$. Thus, $f^{\prime}(4)=2 \cdot \frac{1}{2} \cdot 4^{-1 / 2}=\frac{1}{2}=$.
(c) Find $f^{\prime}(-3)$

Solution: To find $f^{\prime}(-3)$, we must differentiate the part of f defined for $x<1$. In this area, $f^{\prime}(x)=1+3 x^{2}$, so $f^{\prime}(-3)=1+3(-3)^{2}=28$.
3. (25 points) If a stone is shot vertically upward from the roof of 212 foot building with a velocity of $320 \mathrm{ft} / \mathrm{sec}$, its height after t seconds is $s(t)=212+320 t-16 t^{2}$.
(a) What is the height the stone at time $t=0$?

Solution: $s(0)=212$.
(b) What is the height the stone at time $t=2$?

Solution: $s(2)=788$.
(c) What is the average velocity of the stone during the third second?

Solution: $S(3)=1028$ and $S(2)=788$ so we have $(1028-788) / 1=240$
(d) What is the average velocity of the stone during time interval $[2,2.1]$?

Solution: $\frac{S(2.1)-S(2.0)}{2.1-2.0}=\frac{212+320(2.1)-16(2.1)^{2}-212-320(2.0)+16(2.0)^{2}}{0.1}=\frac{320(2.1-2.0)-16(2.1)^{2}-2.0^{2}}{0.1}=$ $\frac{32-16(.1)(4.1)}{0.1}=10 \cdot 25.44=254.4 \mathrm{ft} / \mathrm{sec}$.
(e) What is the average velocity of the stone during time interval [2, 2.01]?

Solution:

Solution: $\frac{S(2.01)-S(2.0)}{2.01-2.0}=\frac{212+320(2.01)-16(2.1)^{2}-212-320(2.0)+16(2.0)^{2}}{0.01}=\frac{320(2.01-2.0)-16(2.01)^{2}-2.0^{2}}{0.01}=$ $\frac{3.2-16(.01)(4.01)}{0.01}=100 \cdot 2.558=255.8 \mathrm{ft} / \mathrm{sec}$.
(f) What is $s^{\prime}(2)$?

Solution: $V(2)=320-16 \cdot 2^{2}=320-64=256$.
(g) What is the velocity of the stone at the time it reaches its maximum height?
Solution: $s^{\prime}(t)=v(t)=0$ when the stone reaches its max height.
(h) At what time is the velocity zero?

Solution: Solve $320-32 t=0$ to get $t=10$.
(i) What is the maximum height the stone reaches?

Solution: Solve $s^{\prime}(t)=320-32 t=0$ to get $t=10$ when the stone reaches its zenith. Thus, the max height is $s(10)=212+320(10)-$ $16(10)^{2}=2123200-1600=1812 \mathrm{ft}$.
(j) What is the velocity of the stone when it hits the ground (height 0)?

Solution: Solve $s(t)=0$ using the quadratic formula to get $t=\frac{20 \pm \sqrt{400+53}}{2}=$ $\frac{20 \pm \sqrt{453}}{2} \approx 10+10.6=20.6$, since the larger value is the only reasonable answer. Find $s^{\prime}(20.6)=320-32(20.6) \approx-340.5$ feet $/ \mathrm{sec}$.
4. (20 points) Let $f(x)=\left(x^{2}-9\right)^{2 / 3}$. Note: some tests had the function $f(x)=$ $\left(x^{2}-9\right)^{1 / 3}$ or similar variations. These two types of functions yield quite different answers.
(a) What is the domain of f ?

Solution: f is defined for all real numbers.
(b) Find all the critical points of f

Solution: f has three critical points, two singular and one stationary. First, $f^{\prime}(x)=2 x\left(x^{2}-9\right)^{-1 / 3} \div 3$. The zeros of this is $x=0 . f^{\prime}$ is undefined at $x= \pm 3$.
(c) Identify each critical point of f as relative minimum, a relative maximum, or an imposter.
Solution: The sign chart for f^{\prime} shows sign changes at $-3,0$ and -3 . So f has relative mins at 3 and -3 and a rel. max $x=0$.
(d) Build the sign chart for your function.

Solution: Our r is positive on $(-\infty,-2) \cup(-1,0) \cup(1, \infty)$.
(e) Sketch the graph of your function using the coordinate axes given below.

Solution: The following graph has the wrong value at zero. I hope to fix this soon.

5. (30 points) Consider the table of values given for the functions f, f^{\prime}, g, and g^{\prime} :

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
0	2	1	6	2
1	4	6	2	5
2	6	4	3	4
3	1	2	5	3
4	3	5	2	6
5	5	3	4	1
6	0	3	2	4

(a) Let $L(x)=f(x+1)+g(x-1)$. Compute $L(2)$ and $L^{\prime}(2)$.

Solution: $L(2)=f(3)+g(1)=3$ and $L^{\prime}(x)=f^{\prime}(x+1)+g^{\prime}(x-1)$, so $L^{\prime}(2)=f^{\prime}(3)+g^{\prime}(1)=2+5=7$.
(b) Let $U(x)=g \circ f(x)$. Compute $U(1)$ and $U^{\prime}(1)$.

Solution: $U(1)=g(f(1))=g(4)=2$. And $U^{\prime}(x)=g^{\prime}(f(x)) \cdot f^{\prime}(x)$, so $U^{\prime}(1)=g^{\prime}\left(f(1) \cdot f^{\prime}(1)=6 \cdot 6=36\right.$.
(c) Let $K(x)=g(x) \cdot f\left(x^{2}\right)$. Compute $K(2)$ and $K^{\prime}(2)$.

Solution: $K(2)=g(2) \cdot f(4)=3 \cdot 3=9$. and, by the product rule, $K^{\prime}(x)=g^{\prime}(x) f\left(x^{2}\right)+g(x) \cdot f^{\prime}\left(x^{2}\right) \cdot 2 x$. Therefore, $K^{\prime}(2)=g^{\prime}(2) f(4)+$ $g(2) f^{\prime}(4) \cdot 4=4 \cdot 3+3 \cdot 5 \cdot 4=72$.
(d) Again, $L(x)=g(x+2) \div f(2 x-1)$. Compute $L(2)$ and $L^{\prime}(2)$.

Solution: $L(2)=g(4) \div f(3)=2 / 1=2$ and $L^{\prime}(x)=\left(g^{\prime}(x+2) \cdot f(2 x-\right.$ 1) $\left.-2 f^{\prime}(2 x-1) g(x+2)\right) \div f(2 x-1)^{2}$, so $L^{\prime}(2)=g^{\prime}(4) \cdot 4 \cdot f(2)+f^{\prime}(2) g(4)=$ $6 \cdot 4 \cdot 6+4 \cdot 2=152$.
(e) Let $Z(x)=g\left(x^{2}+f(x)\right)$. Compute $Z(1)$ and $Z^{\prime}(1)$.

Solution: $Z(1)=g(5)=4$. Again by the chain rule, $Z^{\prime}(x)=g^{\prime}\left(x^{2}+\right.$ $f(x)) \cdot \frac{d}{d x}\left(x^{2}+f(x)\right)=g^{\prime}\left(x^{2}+f(x)\right) \cdot\left(2 x+f^{\prime}(x)\right)$, so $Z^{\prime}(1)=g^{\prime}(1+f(1))$. $\left(2+f^{\prime}(1)\right)=g^{\prime}(3) \cdot(2+6)=1 \cdot 8=8$.
6. (15 points) Two positive numbers x and y are related by $2 x+3 y=16$. What is the largest possible product $x y$ could be, and what pair (x, y) achieves that product? Note that if $y=2$, then $x=5$ and the product $x y=10$. If $y=4$, then $x=2$ and the product is 8 . Trying various combinations of values is not worth any credit.
Solution: Solve $2 x+3 y=16$ for y to get $f(x)=x y=x\left(\frac{16-2 x}{3}\right)=\frac{16 x-2 x^{2}}{3}$. So $f^{\prime}(x)=(16-4 x) / 3$ and $x=4$ is the only critical point. So $x=4$ and $y=8 / 3$. It follows that the maximum value of $x y$ is $4 \cdot 8 / 3=32 / 3$.
7. (10 points) The line tangent to the graph of a function f at the point $(2,9)$ on the graph also goes through the point $(0,7)$. What is $f^{\prime}(2)$?
Solution: The slope of the line through $(2,9)$ and $(0,7)$ is 1 , so $f^{\prime}(2)=1$.
8. (30 points) Let $H(x)=\left(x^{2}-9\right)^{2}(3 x+1)^{3}$.
(a) Use the chain and product rules to find $H^{\prime}(x)$.

Solution:

$$
\begin{aligned}
H^{\prime}(x) & =2\left(x^{2}-9\right) \cdot 2 x(3 x+1)^{3}+3(3 x+1)^{2} \cdot 3\left(x^{2}-9\right)^{2} \\
& =\left(x^{2}-9\right)(3 x+1)^{2}\left[4 x(3 x+1)+9\left(x^{2}-9\right)\right] \\
& =(x-3)(x+3)(3 x+1)^{2}\left[21 x^{2}+4 x-81\right]
\end{aligned}
$$

(b) Find the critical points of H.

Solution: Thus, H has critical points $x= \pm 3,-1 / 3$ and $\frac{-4+\sqrt{6820}}{42}$. The last two are roughly $\alpha \approx-2.06$ and $\beta \approx 1.87$.
(c) Build the sign chart for $H^{\prime}(x)$

Solution: $H^{\prime}(x) \geq 0$ on $(-\infty,-3] \cup[\alpha, \beta] \cup[3, \infty)$.
(d) Classify the critical points of H as max, min, or imposters.

Solution: Notice that $-1 / 3$ is an imposter since $h^{\prime}(x)$ is positive on both sides of $-1 / 3$. Then we have maximums at -3 and β and minimums at α and 3.
(e) Find the intervals over which H is increasing.

Solution: From the sign chart for H^{\prime}, we see that H is increasing on $(-\infty,-3] \cup[\alpha, \beta] \cup[3, \infty)$.
9. (20 points) Let $f(x)=x^{3}+x-3$. Prove that f has exactly one zero as follows.
(a) Use the Intermediate Value Theorem to show that f has at least one zero.
Solution: First note that $f(1)=-1$ and $f(2)=7$. Note that f is a polynomial, so its continuous. Thus we can apply the IVT to conclude that f has a zero in $[1,2]$.
(b) Prove that f is an increasing function on its domain. Conclude that f cannot have more than one zero.
Solution: Take the derivative to get $f^{\prime}(x)=3 x^{2}+1$ and note that f^{\prime} is positive for all real x. Therefore f is an increasing function. Increasing functions cannot have more than 1 zero.

