Calculus

November 1, 2017NameThe total number of points available is 152. Throughout this test, show yourwork.

- 1. (10 points) Let $f(x) = x^3 2x 3$.
 - (a) Compute f'(x)
 - (b) What is f'(2)?
 - (c) Use the information in (b) to find an equation for the line tangent to the graph of f at the point (2, f(2)).
- 2. (12 points) Consider the function f defined by:

$$f(x) = \begin{cases} x + x^3 & \text{if } x < 1\\ 2 & \text{if } x = 1\\ 2x^{1/2} & \text{if } x > 1 \end{cases}$$

- (a) Is f continuous at x = 1?
- (b) What is the slope of the line tangent to the graph of f at the point (4, 4)?

(c) Find f'(-3)

- 3. (25 points) If a stone is shot vertically upward from the roof of 212 foot building with a velocity of 320 ft/sec, its height after t seconds is $s(t) = 212+320t-16t^2$.
 - (a) What is the height the stone at time t = 0?
 - (b) What is the height the stone at time t = 2?
 - (c) What is the average velocity of the stone during the third second?
 - (d) What is the average velocity of the stone during time interval [2, 2.1]?
 - (e) What is the average velocity of the stone during time interval [2, 2.01]?
 - (f) What is s'(2)?
 - (g) What is the velocity of the stone at the time it reaches its maximum height?
 - (h) At what time is the velocity zero?
 - (i) What is the maximum height the stone reaches?
 - (j) What is the velocity of the stone when it hits the ground (height 0)?

- 4. (20 points) Let $f(x) = (x^2 9)^{2/3}$. Note: some tests had the function $f(x) = (x^2 9)^{1/3}$ or similar variations. These two types of functions yield quite different answers.
 - (a) What is the domain of f?
 - (b) Find all the critical points of f
 - (c) Identify each critical point of f as relative minimum, a relative maximum, or an imposter.
 - (d) Build the sign chart for your function.
 - (e) Sketch the graph of your function using the coordinate axes given below.

				-4	•			
•				-3	•	•		
•				-2	•	•		
•				-1	•	•	•	
 -4	-3	-2	-1		1	2	3	4
				-1				
•				-2	•	•		
		•		-3				
				-4				

 \wedge

5. (30 points) Consider the table of values given for the functions f, f', g, and g':

$x \mid$	f(x)	f'(x)	g(x)	g'(x)
0	2	1	6	2
1	4	6	2	5
2	6	4	3	4
3	1	2	5	3
4	3	5	2	6
5	5	3	4	1
6	0	3	2	4

(a) Let L(x) = f(x+1) + g(x-1). Compute L(2) and L'(2).

(b) Let $U(x) = g \circ f(x)$. Compute U(1) and U'(1).

(c) Let $K(x) = g(x) \cdot f(x^2)$. Compute K(2) and K'(2).

(d) Again, $L(x) = g(x+2) \div f(2x-1)$. Compute L(2) and L'(2).

(e) Let $Z(x) = g(x^2 + f(x))$. Compute Z(1) and Z'(1).

6. (15 points) Two positive numbers x and y are related by 2x + 3y = 16. What is the largest possible product xy could be, and what pair (x, y) achieves that product? Note that if y = 2, then x = 5 and the product xy = 10. If y = 4, then x = 2 and the product is 8. Trying various combinations of values is not worth any credit.

7. (10 points) The line tangent to the graph of a function f at the point (2,9) on the graph also goes through the point (0,7). What is f'(2)?

- 8. (30 points) Let $H(x) = (x^2 9)^2(3x + 1)^3$.
 - (a) Use the chain and product rules to find H'(x).
 - (b) Find the critical points of H.
 - (c) Build the sign chart for H'(x)
 - (d) Classify the critical points of H as max, min, or imposters.
 - (e) Find the intervals over which H is increasing.
- 9. (20 points) Let $f(x) = x^3 + x 3$. Prove that f has exactly one zero as follows.
 - (a) Use the Intermediate Value Theorem to show that f has at least one zero.
 - (b) Prove that f is an increasing function on its domain. Conclude that f cannot have more than one zero.