November 1, 2017 Name
The total number of points available is 152. Throughout this test, show your work.

1. (10 points) Let $f(x)=x^{3}-2 x-3$.
(a) Compute $f^{\prime}(x)$
(b) What is $f^{\prime}(2)$?
(c) Use the information in (b) to find an equation for the line tangent to the graph of f at the point $(2, f(2))$.
2. (12 points) Consider the function f defined by:

$$
f(x)= \begin{cases}x+x^{3} & \text { if } x<1 \\ 2 & \text { if } x=1 \\ 2 x^{1 / 2} & \text { if } x>1\end{cases}
$$

(a) Is f continuous at $x=1$?
(b) What is the slope of the line tangent to the graph of f at the point $(4,4)$?
(c) Find $f^{\prime}(-3)$
3. (25 points) If a stone is shot vertically upward from the roof of 212 foot building with a velocity of $320 \mathrm{ft} / \mathrm{sec}$, its height after t seconds is $s(t)=212+320 t-16 t^{2}$.
(a) What is the height the stone at time $t=0$?
(b) What is the height the stone at time $t=2$?
(c) What is the average velocity of the stone during the third second?
(d) What is the average velocity of the stone during time interval $[2,2.1]$?
(e) What is the average velocity of the stone during time interval [2, 2.01]?
(f) What is $s^{\prime}(2)$?
(g) What is the velocity of the stone at the time it reaches its maximum height?
(h) At what time is the velocity zero?
(i) What is the maximum height the stone reaches?
(j) What is the velocity of the stone when it hits the ground (height 0)?
4. (20 points) Let $f(x)=\left(x^{2}-9\right)^{2 / 3}$. Note: some tests had the function $f(x)=$ $\left(x^{2}-9\right)^{1 / 3}$ or similar variations. These two types of functions yield quite different answers.
(a) What is the domain of f ?
(b) Find all the critical points of f
(c) Identify each critical point of f as relative minimum, a relative maximum, or an imposter.
(d) Build the sign chart for your function.
(e) Sketch the graph of your function using the coordinate axes given below.

5. (30 points) Consider the table of values given for the functions f, f^{\prime}, g, and g^{\prime} :

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
0	2	1	6	2
1	4	6	2	5
2	6	4	3	4
3	1	2	5	3
4	3	5	2	6
5	5	3	4	1
6	0	3	2	4

(a) Let $L(x)=f(x+1)+g(x-1)$. Compute $L(2)$ and $L^{\prime}(2)$.
(b) Let $U(x)=g \circ f(x)$. Compute $U(1)$ and $U^{\prime}(1)$.
(c) Let $K(x)=g(x) \cdot f\left(x^{2}\right)$. Compute $K(2)$ and $K^{\prime}(2)$.
(d) Again, $L(x)=g(x+2) \div f(2 x-1)$. Compute $L(2)$ and $L^{\prime}(2)$.
(e) Let $Z(x)=g\left(x^{2}+f(x)\right)$. Compute $Z(1)$ and $Z^{\prime}(1)$.
6. (15 points) Two positive numbers x and y are related by $2 x+3 y=16$. What is the largest possible product $x y$ could be, and what pair (x, y) achieves that product? Note that if $y=2$, then $x=5$ and the product $x y=10$. If $y=4$, then $x=2$ and the product is 8 . Trying various combinations of values is not worth any credit.
7. (10 points) The line tangent to the graph of a function f at the point $(2,9)$ on the graph also goes through the point $(0,7)$. What is $f^{\prime}(2)$?
8. (30 points) Let $H(x)=\left(x^{2}-9\right)^{2}(3 x+1)^{3}$.
(a) Use the chain and product rules to find $H^{\prime}(x)$.
(b) Find the critical points of H.
(c) Build the sign chart for $H^{\prime}(x)$
(d) Classify the critical points of H as max, min, or imposters.
(e) Find the intervals over which H is increasing.
9. (20 points) Let $f(x)=x^{3}+x-3$. Prove that f has exactly one zero as follows.
(a) Use the Intermediate Value Theorem to show that f has at least one zero.
(b) Prove that f is an increasing function on its domain. Conclude that f cannot have more than one zero.

