February 25, 2002
Your name
The first 9 problems count 6 points each and the final ones counts as marked. Problems 1 through 4 are multiple choice. In the multiple choice section, circle the correct choice (or choices). You do not need to show your work on problems 1 through 4, but you must show your work on the other problems. The total number of points available is 106 .

1. Questions (a) through (c) refer to the graph of the function f given below.

(a) A good estimate of $f^{\prime}(0)$ is
(A) -1
(B) 0
(C) 1
(D) 2
(E) there is no good estimate

Solution: B. The tangent line seems to be horizontal, therefore the best estimate of its slope is 0 .
(b) A good estimate of $f^{\prime}(-1)$ is
(A) -1
(B) 0
(C) 1
(D) 2
(E) there is no good estimate

Solution: A. The tangent line has a negative slope, therefore the best estimate of its slope is -1 .
(c) A good estimate of $f^{\prime}(1 / 2)$ is
(A) -2
(B) -1
(C) 0
(D) 1.5
(E) there is no good estimate

Solution: D. The tangent line has positive slope, so the only reasonable estimate of $f^{\prime}(1 / 2)$ is 1.5 .
2. The line tangent to the graph of a function f at the point $(2,-1)$ on the graph also goes through the point $(-2,7)$. What is $f^{\prime}(2)$?
(A) -2
(B) -1
(C) 0
(D) 1
(E) 2

Solution: A. The slope of the tangent line is $\frac{-1-7}{2-(-2)}=-2$, so $f^{\prime}(2)=-2$.
3. What is the slope of the tangent line to the graph of $f(x)=3 x^{2}-4 x$ at the point $(2,4)$?
(A) 2
(B) 4
(C) 8
(D) -8
(E) -4

Solution: C. $f^{\prime}(x)=6 x-4$, which at $x=2$ has the value 8 .
4. Suppose the functions f and g have derivatives at all their domain points and their values at certain points are given in the table. The next four problems refer to these functions f and g. Recall that, for example, the entry 1 in the first row and third column means that $f^{\prime}(0)=1$. In each case, a function $H(x)$ is given in terms of $f(x)$ and $g(x)$. You are asked to find $H^{\prime}(x)$ at the value of x provided.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
0	2	1	5	4
1	7	3	6	2
2	5	4	1	7
3	1	2	6	8
4	3	3	2	5
5	6	4	1	4
6	0	5	4	6
7	4	1	5	1

(a) The function H is defined by $H(x)=f(g(x))$. Use the chain rule to find $H^{\prime}(2)$.
(A) 3
(B) 6
(C) 9
(D) 12
(E) 21

Solution: E. By the chain rule, $H^{\prime}(2)=f^{\prime}(g(2)) g^{\prime}(2)=f^{\prime}(1) \cdot 7=3 \cdot 7=$ 21.
(b) The function H is defined by $H(x)=(f(x)) \cdot(g(x))$. Use the product rule to find $H^{\prime}(3)$.
(A) 10
(B) 12
(C) 16
(D) 20
(E) 24

Solution: D. By the product rule, $H^{\prime}(3)=f^{\prime}(3) g(3)+g^{\prime}(3) f(3)=$ $2 \cdot 6+8 \cdot 1=20$.
(c) The function H is defined by $H(x)=(x+f(x)) / g(x)$. Use the quotient rule to find $H^{\prime}(4)$.
(A) $-35 / 4$
(B) $-27 / 4$
(C) -6
(D) -5
(E) 0

Solution: B. By the quotient rule, $H^{\prime}(x)=\frac{\left(1+f^{\prime}(x) g(x)-g^{\prime}(x)(x+f(x)\right.}{g(x)^{2}}$. So $H^{\prime}(4)=\frac{\left(1+f^{\prime}(4)\right) g(4)-g^{\prime}(4)(4+f(4))}{g(4)^{2}}=\frac{(1+3) 2-5(4+3)}{4}=-27 / 4$.
(d) The function H is defined by $H(x)=(f(x))^{2}+(g(x))^{2}$. Find $H^{\prime}(1)$.
(A) 12
(B) 18
(C) 24
(D) 44
(E) 66

Solution: E. Note that $H^{\prime}(x)=2 f^{\prime}(x) f(x)+2 g^{\prime}(x) g(x)$, so $H^{\prime}(1)=$ $2 f^{\prime}(1) f(1)+2 g^{\prime}(1) g(1)=2(7 \cdot 3+2 \cdot 6)=66$.

On all the following questions, show your work.
5. (20 points) A division of Ditton Industries manufactures microwave ovens. The daily cost (in dollars) of producing x ovens is given by $C(x)=0.0002 x^{3}-$ $0.03 x^{2}+120 x+5000$
(a) What is the actual cost of producing the 201st, and 301st microwave oven?
Solution: $C(201)-C(200)=0.0002\left(201^{3}-200^{3}\right)-0.03\left(201^{2}-200^{2}\right)+$ $120(201-200)+5000-5000=24.12-12.03+120=\$ 132.09$. and $C(301)-C(300)=0.0002\left(301^{3}-300^{3}\right)-0.03\left(301^{2}-300^{2}\right)+120(301-$ $300)+5000-5000=54.18-18.03+120=\$ 165.15$.
(b) Find the marginal cost function $C^{\prime}(x)$.

Solution: $C^{\prime}(x)=0.0002 \cdot 3 x^{2}-0.03 \cdot 2 x+120$
(c) Find $C^{\prime}(200)$ and $C^{\prime}(300)$

Solution: $C^{\prime}(200)=24-12+120=\$ 132.00$ and $C^{\prime}(300)=54-18+$ $120=\$ 156.00$.
(d) Find the average cost function $\bar{C}(x)$.

Solution: $\bar{C}(x)=\frac{0.0002 x^{3}-0.03 x^{2}+120 x+5000}{x}$.
6. (20 points) Compute the following derivatives.
(a) Let $f(x)=x^{-1}+x^{-2}$. Find $\frac{d}{d x} f(x)$.

Solution: $\frac{d}{d x} f(x)=-x^{-2}-2 x^{-3}$.
(b) Let $g(x)=\left(x^{2}+4\right)^{2 / 3}$. What is $g^{\prime}(x)$?

Solution: $g^{\prime}(x)=\frac{2}{3}\left(x^{2}+4\right)^{-1 / 3} \cdot 2 x=4 x\left(x^{2}+4\right)^{-1 / 3} / 3$.
(c) Find $\frac{d}{d x}\left((3 x+1)^{2} \cdot\left(x^{2}-1\right)^{2}\right)$

Solution: $\frac{d}{d x}=2(3 x+1) \cdot 3\left(x^{2}-1\right)^{2}+2\left(x^{2}-1\right) \cdot 2 x(3 x+1)^{2}$
$=2(3 x+1)\left(x^{2}-1\right)\left(3\left(x^{2}-1\right)+2 x(3 x+1)\right)$
$=2(3 x+1)\left(x^{2}-1\right)\left(9 x^{2}+2 x-3\right)$.
(d) Find $\frac{d}{d x} \frac{2 x^{3}+1}{x+1}$

Solution: Use the quotient rule to get $\frac{d}{d x} \frac{2 x^{3}+1}{x+1}=\frac{6 x^{2}(x+1)-\left(2 x^{3}+1\right)}{(x+1)^{2}}=$ $\frac{4 x^{3}+6 x^{2}-1}{(x+1)^{2}}$.
7. (12 points) Recall that two important functions, denoted $e(x)$ and $l(x)$, we'll study later in the course satisfy (a), $e^{\prime}(x)=e(x), l^{\prime}(x)=1 / x, \quad$ and $l \circ e(x)=x$ for all x.
(a) Compute $\frac{d}{d x} e\left(x^{2}\right)$

Solution: By the chain rule, $\frac{d}{d x} e\left(x^{2}\right)=e^{\prime}\left(x^{2}\right) \cdot 2 x=e\left(x^{2}\right) \cdot 2 x$.
(b) Compute $\frac{d}{d x}(l(x) / e(x))$

Solution: $\frac{d}{d x}(l(x) / e(x))=\frac{l^{\prime}(x) e(x)-e^{\prime}(x) l(x)}{e(x)^{2}}=\frac{e(x) / x-e(x) l(x)}{e(x)^{2}}$.

