February 25, 2002
Your name
The first 9 problems count 6 points each and the final ones counts as marked. Problems 1 through 4 are multiple choice. In the multiple choice section, circle the correct choice (or choices). You do not need to show your work on problems 1 through 4 , but you must show your work on the other problems. The total number of points available is 106 .

1. Questions (a) through (c) refer to the graph of the function f given below.

(a) A good estimate of $f^{\prime}(0)$ is
(A) -1
(B) 0
(C) 1
(D) 2
(\mathbf{E}) there is no good estimate
(b) A good estimate of $f^{\prime}(-1)$ is
(A) -1
(B) 0
(C) 1
(D) 2
(E) there is no good estimate
(c) A good estimate of $f^{\prime}(1 / 2)$ is
(A) -2
(B) -1
(C) 0
(D) 1.5
(\mathbf{E}) there is no good estimate
2. The line tangent to the graph of a function f at the point $(2,-1)$ on the graph also goes through the point $(-2,7)$. What is $f^{\prime}(2)$?
(A) -2
(B) -1
(C) 0
(D) 1
(E) 2
3. What is the slope of the tangent line to the graph of $f(x)=3 x^{2}-4 x$ at the point $(2,4)$?
(A) 2
(B) 4
(C) 8
(D) -8
(E) -4
4. Suppose the functions f and g have derivatives at all their domain points and their values at certain points are given in the table. The next four problems refer to these functions f and g. Recall that, for example, the entry 1 in the first row and third column means that $f^{\prime}(0)=1$. In each case, a function $H(x)$ is given in terms of $f(x)$ and $g(x)$. You are asked to find $H^{\prime}(x)$ at the value of x provided.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
0	2	1	5	4
1	7	3	6	2
2	5	4	1	7
3	1	2	6	8
4	3	3	2	5
5	6	4	1	4
6	0	5	4	6
7	4	1	5	1

(a) The function H is defined by $H(x)=f(g(x))$. Use the chain rule to find $H^{\prime}(2)$.
(A) 3
(B) 6
(C) 9
(D) 12
(E) 21
(b) The function H is defined by $H(x)=(f(x)) \cdot(g(x))$. Use the product rule to find $H^{\prime}(3)$.
(A) 10
(B) 12
(C) 16
(D) 20
(E) 24
(c) The function H is defined by $H(x)=(x+f(x)) / g(x)$. Use the quotient rule to find $H^{\prime}(4)$.
(A) $-35 / 4$
(B) $-27 / 4$
(C) -6
(D) -5
(E) 0
(d) The function H is defined by $H(x)=(f(x))^{2}+(g(x))^{2}$. Find $H^{\prime}(1)$.
(A) 12
(B) 18
(C) 24
(D) 44
(E) 66

On all the following questions, show your work.
5. (20 points) A division of Ditton Industries manufactures microwave ovens. The daily cost (in dollars) of producing x ovens is given by $C(x)=0.0002 x^{3}-$ $0.03 x^{2}+120 x+5000$
(a) What is the actual cost of producing the 201st, and 301st microwave oven?
(b) Find the marginal cost function $C^{\prime}(x)$.
(c) Find $C^{\prime}(200)$ and $C^{\prime}(300)$
(d) Find the average cost function $\bar{C}(x)$.
6. (20 points) Compute the following derivatives.
(a) Let $f(x)=x^{-1}+x^{-2}$. Find $\frac{d}{d x} f(x)$.
(b) Let $g(x)=\left(x^{2}+4\right)^{2 / 3}$. What is $g^{\prime}(x)$?
(c) Find $\frac{d}{d x}\left((3 x+1)^{2} \cdot\left(x^{2}-1\right)^{2}\right)$
(d) Find $\frac{d}{d x} \frac{2 x^{3}+1}{x+1}$
7. (12 points) Recall that two important functions, denoted $e(x)$ and $l(x)$, we'll study later in the course satisfy (a), $e^{\prime}(x)=e(x), l^{\prime}(x)=1 / x, \quad$ and $l \circ e(x)=x$ for all x.
(a) Compute $\frac{d}{d x} e\left(x^{2}\right)$
(b) Compute $\frac{d}{d x}(l(x) / e(x))$

