October 18, 2001
Your name \qquad
The multiple choice problems count 4 points each. In the multiple choice section, circle the correct choice (or choices). You must show your work on the other problems 5 through 10. The total number of points available is 131 .

1. Questions (a) through (e) refer to the graph of the function f given below.

(a) $\lim _{x \rightarrow 3} f(x)=$
(A) 0
(B) 1
(C) 2
(D) 4
(E) does not exist

Solution: $\lim _{x \rightarrow 3} f(x)=2$, by the blotter test.
(b) $\lim _{x \rightarrow 2^{-}} f(x)=$
(A) 0
(B) 1
(C) 2
(D) 4
(E) does not exist

Solution: $\lim _{x \rightarrow 2^{-}} f(x)=0$, by the blotter test.
(c) A good estimate of $f^{\prime}(-2)$ is
(A) -1
(B) 0
(C) 1
(D) 2
(E) there is no good estimate

Solution: $f^{\prime}(-2)=0$ because the tangent line is horizontal.
(d) A good estimate of $f^{\prime}(-1)$ is
(A) -1
(B) 0
(C) 1
(D) 2
(E) there is no good estimate

Solution: $\quad f^{\prime}(-1)=-1$ because the tangent line has a negative slope.
(e) A good estimate of $f^{\prime}(3)$ is
(A) -1
(B) 0
(C) 1
(D) 2
(E) there is no good estimate

Solution: $f^{\prime}(3)=0$ because the tangent line is horizontal.
2. The line tangent to the graph of a function f at the point $(2,3)$ on the graph also goes through the point $(-1,9)$. What is $f^{\prime}(2)$?
(A) -2
(B) -1
(C) 0
(D) 1
(E) 2

Solution: The slope must be $m=\frac{9-3}{-1-2}=-2$.
3. What is the slope of the tangent line to the graph of $f(x)=(3 x)^{-1}$ at the point ($1,1 / 3$)?
(A) $-2 / 9$
(B) $-1 / 3$
(C) $-2 / 27$
(D) $-2 / 81$
(E) 0

Solution: First note that $f^{\prime}(x)=-1(3 x)^{-2} \cdot 3=-x^{-2} / 3$ so $f^{\prime}(1)=-1 / 3$.
4. True-false questions. These count 2 points each.
(a) True or false. If $f^{\prime}(x)>0$ for each x in the interval $(-1,1)$, then f is increasing on $(-1,1)$.
Solution: True.
(b) True or false. If $f(a)<0, f(b)>0$, and $f^{\prime}(x)>0$ for each x in (a, b), then there is one and only one number c in (a, b) such that $f(c)=0$.
Solution: True. The Intermediate Value Theorem guarantees that there is at least one c in (a, b), and the condition $f^{\prime}(x)>0$ for each x in (a, b) guarantees that there can be no more than 1 such point.
(c) True or false. The graph of a function cannot touch or intersect a horizontal asymptote to the graph of f.
Solution: False. There is nothing in the definition of horizontal asymptote that implies this.
(d) True or false. If $f^{\prime}(c)=0$, then f has a relative maximum or a relative minimum at $x=c$.
Solution: False. The function can have neither a max nor a min at a stationary point. Look at $f(x)=x^{3}$ and 0 .
(e) True or false. If f has a relative maximum or a relative minimum at $x=c$, then $f^{\prime}(c)=0$.
Solution: False. All we can tell is that c is a critical point. It might be a singular point.
(f) True or false. If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$, then f has a relative maximum at $x=c$.
Solution: True. This is just the second derivative test.
(g) True or false. If f and g are differentiable, then $\frac{d}{d x}[f(x) g(x)]=f^{\prime}(x) g^{\prime}(x)$.

Solution: False. Look up the product rule.
(h) True or false. If f and g are differentiable, then $\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{f^{\prime}(x)}{g^{\prime}(x)}$.

Solution: False. Look up the quotient rule.
(i) True or false. If f and g are differentiable and $h(x)=f \circ g$, then $h^{\prime}(x)=$ $f[g(x)] g^{\prime}(x)$.
Solution: False. Look up the chain rule.
(j) True or false. If f and g are differentiable and a and b are constants, then $\frac{d}{d x}[a f(x)+b g(x)]=a \frac{d}{d x} f(x)+b \frac{d}{d x} g(x)$.
Solution: True. This is just the rule that talks about the derivative of the sum and of a constant times a function.

On all the following questions, show your work.
5. (10 points) Let $f(x)=1 /(2 x)$.
(a) Construct $\frac{f(2+h)-f(2)}{h}$

Solution: $\frac{f(2+h)-f(2)}{h}=\frac{1 / 2(2+h)-1 / 2(2)}{h}=\frac{(4-(4+2 h)) / 4(4+2 h)}{h}=\frac{-2 h / 4(4+2 h)}{h}$.
(b) Simplify and take the limit of the expression in (a) as h approaches 0 to find $f^{\prime}(2)$.
Solution: $\lim _{h \rightarrow 0} \frac{-2 h / 4(4+2 h)}{h}=\lim _{h \rightarrow 0} \frac{-2}{4(4+2 h)}=-1 / 8$.
(c) Use the information found in (b) to find an equation for the line tangent to the graph of f at the point $(2,1 / 4)$.
Solution: The equation for the line is $y-1 / 4=-1 / 8(x-2)$ which in slope-intercept is $y=-x / 8+1 / 2$.
6. (8 points) Suppose $f(x)$ is a function such that $f(2)=1$ and $f^{\prime}(x)=3 x+4$ for all real numbers x. Let L denote the line that is tangent to the graph of $f(x)$ at the point $(2,1)$. What is the slope of L ? What is the y-intercept of L ? What is the x-intercept of L ?
Solution: The slope of the line is $f^{\prime}(2)=3 \cdot 2+4=10$, and the line itself is $y-1=10(x-2)$ which is just $y=10 x-19$. The y-intercept is -19 and the x-intercept is 1.9 .
7. (8 points) Find an equation of the tangent line to the graph of $f(x)=\sqrt{2 x-5}$ at the point $(3,1)$.
Solution: First differentiate f to get $f^{\prime}(x)=\frac{1}{2}(2 x-5)^{-1 / 2} \cdot 2=(2 x-5)^{-1 / 2}$. Thus $f^{\prime}(3)=1$, and the line is given by $y-1=1(x-3)$.
8. (15 points)
(a) State the hypothesis of the Intermediate Value Theorem (IVT).

Solution: The function f must be continuous over an interval $[a, b]$, and the number M is between $f(a)$ and $f(b)$.
(b) State the conclusion of the Intermediate Value Theorem.

Solution: Then there is a number c in the open interval (a, b) such that $f(c)=M$.
(c) Does the function $f(x)=\sqrt{x+4}$ satisfy the hypothesis of IVT over the interval $[0,12]$. If so, find a whole number M between $f(0)$ and $f(12)$, and then find a number c in the interval $(0,12)$ such that $f(c)=M$.
Solution: Note that $f(0)=\sqrt{4}=2$ and $f(12)=\sqrt{16}=4$, and the only whole number between these two is 3 . So we need to solve the equation $f(c)=\sqrt{c+4}=3$. We can do this by squaring both sides to get $c+4=9$ which means $c=5$.
9. (12 points) Suppose the functions f and g and their derivatives are given by the table of values shown. Complete the table by calculating the values of the derivatives of both $f \circ g(x)$ and $g \circ f(x)$ for each of the values of x in the table.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$	$\frac{d f \circ g(x)}{d x}$	$\frac{d g \circ f(x)}{d x}$
0	2	3	1	3		
1	3	4	5	2		
2	2	1	1	4		
3	5	3	4	1		
4	4	1	3	2		
5	2	0	0	4		

Solution: First note that the notation $\frac{d f \circ g(x)}{d x}$ means $(f \circ g)^{\prime}(x)$, ie, the derivative of the composition of f and g. Thus, we use the chain rule. The sixth entry of the top row, for example, is $f^{\prime}\left(g(0) \cdot g^{\prime}(0)=f^{\prime}(1) \cdot g^{\prime}(0)=4 \cdot 3=12\right.$.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$	$\frac{d f \circ g(x)}{d x}$	$\frac{d g \circ f(x)}{d x}$
0	2	3	1	3	12	12
1	3	4	5	2	0	4
2	2	1	1	4	16	4
3	5	3	4	1	1	12
4	4	1	3	2	6	2
5	2	0	0	4	12	0

10. (30 points) Compute the following derivatives.
(a) Let $f(x)=x^{2}-(1 / x)$. Find $\frac{d}{d x} f(x)$.

Solution: $f^{\prime}(x)=2 x+x^{-2}$.
(b) Let $g(x)=\sqrt{3 x^{3}+4}$. What is $g^{\prime}(x)$?

Solution: $g^{\prime}(x)=\frac{1}{2}\left(3 x^{3}+4\right)^{-1 / 2} \cdot 9 x^{2}=\frac{9 x^{2}}{2 \sqrt{3 x^{3}+4}}$.
(c) Find $\frac{d}{d x}\left((2 x+1)^{3} \cdot\left(3 x^{2}-1\right)\right)$

Solution: The derivative is obtained by the product rule: $3(2 x+1)^{2} \cdot 2$. $\left(3 x^{2}-1\right)+(2 x+1)^{3} \cdot 6 x=6(2 x+1)^{2}\left(5 x^{2}+x-1\right)$.
(d) Find $\frac{d}{d x} \frac{2 x+1}{x^{2}+2}$

Solution: By the quotient rule, the derivative is $\frac{2\left(x^{2}+2\right)-(2 x+1) 2 x}{\left(x^{2}+2\right)^{2}}=\frac{-2 x^{2}-2 x+4}{\left(x^{2}+2\right)^{2}}$.
(e) Find $\frac{d}{d t}\left(t^{-3}+t^{-2}\right)^{3}$.

Solution: By the chain rule, the derivative is $3\left(t^{-3}+t^{-2}\right)^{2}\left(-3 t^{-4}-2 t^{-3}\right)$.

