Math 1120	Calculus	Test 2.
-----------	----------	---------

October 18, 2001 Your name _

The multiple choice problems count 4 points each. In the multiple choice section, circle the correct choice (or choices). You must show your work on the other problems 5 through 10. The total number of points available is 131.

1. Questions (a) through (e) refer to the graph of the function f given below.

(e) A good estimate of f'(3) is

(A) -1 (B) 0 (C) 1 (D) 2 (E) there is no good estimate Solution: f'(3) = 0 because the tangent line is horizontal.

2. The line tangent to the graph of a function f at the point (2,3) on the graph also goes through the point (-1,9). What is f'(2)?

$$(A) -2 (B) -1 (C) 0 (D) 1 (E) 2$$

Solution: The slope must be $m = \frac{9-3}{-1-2} = -2$.

3. What is the slope of the tangent line to the graph of $f(x) = (3x)^{-1}$ at the point (1,1/3)?

(A)
$$-2/9$$
 (B) $-1/3$ (C) $-2/27$ (D) $-2/81$ (E) 0
Solution: First note that $f'(x) = -1(3x)^{-2} \cdot 3 = -x^{-2}/3$ so $f'(1) = -1/3$.

- 4. True-false questions. These count 2 points each.
 - (a) True or false. If f'(x) > 0 for each x in the interval (-1,1), then f is increasing on (-1,1).
 Solution: True.
 - (b) True or false. If f(a) < 0, f(b) > 0, and f'(x) > 0 for each x in (a, b), then there is one and only one number c in (a, b) such that f(c) = 0. Solution: True. The Intermediate Value Theorem guarantees that there is at least one c in (a, b), and the condition f'(x) > 0 for each x in (a, b) guarantees that there can be no more than 1 such point.
 - (c) True or false. The graph of a function cannot touch or intersect a horizontal asymptote to the graph of f.
 Solution: False. There is nothing in the definition of horizontal asymptote that implies this.
 - (d) True or false. If f'(c) = 0, then f has a relative maximum or a relative minimum at x = c.
 Solution: False. The function can have neither a max nor a min at a stationary point. Look at f(x) = x³ and 0.
 - (e) True or false. If f has a relative maximum or a relative minimum at x = c, then f'(c) = 0.

Solution: False. All we can tell is that c is a critical point. It might be a singular point.

(f) True or false. If f'(c) = 0 and f''(c) < 0, then f has a relative maximum at x = c.

Solution: True. This is just the second derivative test.

- (g) True or false. If f and g are differentiable, then $\frac{d}{dx}[f(x)g(x)] = f'(x)g'(x)$. Solution: False. Look up the product rule.
- (h) True or false. If f and g are differentiable, then $\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{f'(x)}{g'(x)}$. Solution: False. Look up the quotient rule.
- (i) True or false. If f and g are differentiable and $h(x) = f \circ g$, then h'(x) = f[g(x)]g'(x).

Solution: False. Look up the chain rule.

(j) True or false. If f and g are differentiable and a and b are constants, then $\frac{d}{dx}[af(x) + bg(x)] = a\frac{d}{dx}f(x) + b\frac{d}{dx}g(x).$ Solution: True This is just the rule that talks about the derivative of

Solution: True. This is just the rule that talks about the derivative of the sum and of a constant times a function.

On all the following questions, show your work.

- 5. (10 points) Let f(x) = 1/(2x).
 - (a) Construct $\frac{f(2+h)-f(2)}{h}$ Solution: $\frac{f(2+h)-f(2)}{h} = \frac{1/2(2+h)-1/2(2)}{h} = \frac{(4-(4+2h))/4(4+2h)}{h} = \frac{-2h/4(4+2h)}{h}.$
 - (b) Simplify and take the limit of the expression in (a) as h approaches 0 to find f'(2).

Solution: $\lim_{h \to 0} \frac{-2h/4(4+2h)}{h} = \lim_{h \to 0} \frac{-2}{4(4+2h)} = -1/8.$

- (c) Use the information found in (b) to find an equation for the line tangent to the graph of f at the point (2, 1/4).
 Solution: The equation for the line is y − 1/4 = −1/8(x − 2) which in slope-intercept is y = −x/8 + 1/2.
- 6. (8 points) Suppose f(x) is a function such that f(2) = 1 and f'(x) = 3x + 4 for all real numbers x. Let L denote the line that is tangent to the graph of f(x) at the point (2, 1). What is the slope of L? What is the y-intercept of L? What is the x-intercept of L?

Solution: The slope of the line is $f'(2) = 3 \cdot 2 + 4 = 10$, and the line itself is y - 1 = 10(x - 2) which is just y = 10x - 19. The *y*-intercept is -19 and the *x*-intercept is 1.9.

7. (8 points) Find an equation of the tangent line to the graph of $f(x) = \sqrt{2x-5}$ at the point (3,1).

Solution: First differentiate f to get $f'(x) = \frac{1}{2}(2x-5)^{-1/2} \cdot 2 = (2x-5)^{-1/2}$. Thus f'(3) = 1, and the line is given by y - 1 = 1(x - 3).

- 8. (15 points)
 - (a) State the hypothesis of the Intermediate Value Theorem (IVT). Solution: The function f must be continuous over an interval [a, b], and the number M is between f(a) and f(b).
 - (b) State the conclusion of the Intermediate Value Theorem.
 Solution: Then there is a number c in the open interval (a, b) such that f(c) = M.
 - (c) Does the function $f(x) = \sqrt{x+4}$ satisfy the hypothesis of IVT over the interval [0, 12]. If so, find a whole number M between f(0) and f(12), and then find a number c in the interval (0, 12) such that f(c) = M. Solution: Note that $f(0) = \sqrt{4} = 2$ and $f(12) = \sqrt{16} = 4$, and the only whole number between these two is 3. So we need to solve the equation $f(c) = \sqrt{c+4} = 3$. We can do this by squaring both sides to get c+4 = 9 which means c = 5.
- 9. (12 points) Suppose the functions f and g and their derivatives are given by the table of values shown. Complete the table by calculating the values of the derivatives of both $f \circ g(x)$ and $g \circ f(x)$ for each of the values of x in the table.

x	f(x)	f'(x)	g(x)	g'(x)	$rac{df \circ g(x)}{dx}$	$\frac{dg \circ f(x)}{dx}$
0	2	3	1	3		
1	3	4	5	2		
2	2	1	1	4		
3	5	3	4	1		
4	4	1	3	2		
5	2	0	0	4		

Solution: First note that the notation $\frac{df \circ g(x)}{dx}$ means $(f \circ g)'(x)$, ie, the derivative of the composition of f and g. Thus, we use the chain rule. The sixth entry of the top row, for example, is $f'(g(0) \cdot g'(0) = f'(1) \cdot g'(0) = 4 \cdot 3 = 12$.

x	f(x)	f'(x)	g(x)	g'(x)	$\frac{df \circ g(x)}{dx}$	$\frac{dg \circ f(x)}{dx}$
0	2	3	1	3	12	12
1	3	4	5	2	0	4
2	2	1	1	4	16	4
3	5	3	4	1	1	12
4	4	1	3	2	6	2
5	2	0	0	4	12	0

10. (30 points) Compute the following derivatives.

- (a) Let $f(x) = x^2 (1/x)$. Find $\frac{d}{dx}f(x)$. Solution: $f'(x) = 2x + x^{-2}$.
- (b) Let $g(x) = \sqrt{3x^3 + 4}$. What is g'(x)? Solution: $g'(x) = \frac{1}{2}(3x^3 + 4)^{-1/2} \cdot 9x^2 = \frac{9x^2}{2\sqrt{3x^3 + 4}}$.
- (c) Find $\frac{d}{dx}((2x+1)^3 \cdot (3x^2-1))$ **Solution:** The derivative is obtained by the product rule: $3(2x+1)^2 \cdot 2 \cdot (3x^2-1) + (2x+1)^3 \cdot 6x = 6(2x+1)^2(5x^2+x-1).$
- (d) Find $\frac{d}{dx} \frac{2x+1}{x^2+2}$

Solution: By the quotient rule, the derivative is $\frac{2(x^2+2)-(2x+1)2x}{(x^2+2)^2} = \frac{-2x^2-2x+4}{(x^2+2)^2}$.

(e) Find $\frac{d}{dt}(t^{-3}+t^{-2})^3$. Solution: By the chain rule, the derivative is $3(t^{-3}+t^{-2})^2(-3t^{-4}-2t^{-3})$.