October 18, 2001
Your name \qquad
The multiple choice problems count 4 points each. In the multiple choice section, circle the correct choice (or choices). You must show your work on the other problems 5 through 10. The total number of points available is 131 .

1. Questions (a) through (e) refer to the graph of the function f given below.

(a) $\lim _{x \rightarrow 3} f(x)=$
(A) 0
(B) 1
(C) 2
(D) 4
(E) does not exist
(b) $\lim _{x \rightarrow 2^{-}} f(x)=$
(A) 0
(B) 1
(C) 2
(D) 4
(E) does not exist
(c) A good estimate of $f^{\prime}(-2)$ is
(A) -1
(B) 0
(C) 1
(D) 2
(E) there is no good estimate
(d) A good estimate of $f^{\prime}(-1)$ is
(A) -1
(B) 0
(C) 1
(D) 2
(E) there is no good estimate
(e) A good estimate of $f^{\prime}(3)$ is
(A) -1
(B) 0
(C) 1
(D) 2
(E) there is no good estimate
2. The line tangent to the graph of a function f at the point $(2,3)$ on the graph also goes through the point $(-1,9)$. What is $f^{\prime}(2)$?
(A) -2
(B) -1
(C) 0
(D) 1
(E) 2
3. What is the slope of the tangent line to the graph of $f(x)=(3 x)^{-1}$ at the point ($1,1 / 3$)?
(A) $-2 / 9$
(B) $-1 / 3$
(C) $-2 / 27$
(D) $-2 / 81$
(E) 0
4. True-false questions. These count 2 points each.
(a) True or false. If $f^{\prime}(x)>0$ for each x in the interval $(-1,1)$, then f is increasing on $(-1,1)$.
(b) True or false. If $f(a)<0, f(b)>0$, and $f^{\prime}(x)>0$ for each x in (a, b), then there is one and only one number c in (a, b) such that $f(c)=0$.
(c) True or false. The graph of a function cannot touch or intersect a horizontal asymptote to the graph of f.
(d) True or false. If $f^{\prime}(c)=0$, then f has a relative maximum or a relative minimum at $x=c$.
(e) True or false. If f has a relative maximum or a relative minimum at $x=c$, then $f^{\prime}(c)=0$.
(f) True or false. If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$, then f has a relative maximum at $x=c$.
(g) True or false. If f and g are differentiable, then $\frac{d}{d x}[f(x) g(x)]=f^{\prime}(x) g^{\prime}(x)$.
(h) True or false. If f and g are differentiable, then $\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{f^{\prime}(x)}{g^{\prime}(x)}$.
(i) True or false. If f and g are differentiable and $h(x)=f \circ g$, then $h^{\prime}(x)=$ $f[g(x)] g^{\prime}(x)$.
(j) If f and g are differentiable and a and b are constants, then $\frac{d}{d x}[a f(x)+$ $b g(x)]=a \frac{d}{d x} f(x)+b \frac{d}{d x} g(x)$.

On all the following questions, show your work.
5. (10 points) Let $f(x)=1 /(2 x)$.
(a) Construct $\frac{f(2+h)-f(2)}{h}$
(b) Simplify and take the limit of the expression in (a) as h approaches 0 to find $f^{\prime}(2)$.
(c) Use the information found in (b) to find an equation for the line tangent to the graph of f at the point $(2,1 / 4)$.
6. (8 points) Suppose $f(x)$ is a function such that $f(2)=1$ and $f^{\prime}(x)=3 x+4$ for all real numbers x. Let L denote the line that is tangent to the graph of $f(x)$ at the point $(2,1)$. What is the slope of L ? What is the y-intercept of L ? What is the x-intercept of L ?
7. (8 points) Find an equation of the tangent line to the graph of $f(x)=\sqrt{2 x-5}$ at the point $(3,1)$.

8. (15 points)

(a) State the hypothesis of the Intermediate Value Theorem (IVT).
(b) State the conclusion of the Intermediate Value Theorem.
(c) Does the function $f(x)=\sqrt{x+4}$ satisfy the hypothesis of IVT over the interval $[0,12]$. If so, find a whole number M between $f(0)$ and $f(12)$, and then find a number c in the interval $(0,12)$ such that $f(c)=M$.
9. (12 points) Suppose the functions f and g and their derivatives are given by the table of values shown. Complete the table by calculating the values of the derivatives of both $f \circ g(x)$ and $g \circ f(x)$ for each of the values of x in the table.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$	$\frac{d f \circ g(x)}{d x}$	$\frac{d g \circ f(x)}{d x}$
0	2	3	1	3		
1	3	4	5	2		
2	2	1	1	4		
3	5	3	4	1		
4	4	1	3	2		
5	2	0	0	4		

10. (30 points) Compute the following derivatives.
(a) Let $f(x)=x^{2}-(1 / x)$. Find $\frac{d}{d x} f(x)$.
(b) Let $g(x)=\sqrt{3 x^{3}+4}$. What is $g^{\prime}(x)$?
(c) Find $\frac{d}{d x}\left((2 x+1)^{3} \cdot\left(3 x^{2}-1\right)\right)$
(d) Find $\frac{d}{d x} \frac{2 x+1}{x^{2}+2}$
(e) Find $\frac{d}{d t}\left(t^{-3}+t^{-2}\right)^{3}$.
