June 13, 2001 Name

The total number of points possible is 130. SHOW YOUR WORK

1. (20 points) Use the definition of derivative to find f'(a) for the function $f(x) = 4x - x^3$. Use this information to find the slope of the line tangent to the graph of f at the point (-1, -3).

Solution:

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} =$$

$$\lim_{h \to 0} \frac{4(x+h) - (x+h)^3 - (4x-x^3)}{h} =$$

$$\lim_{h \to 0} \frac{4x + 4h - (x^3 + 3x^2h + 3xh^2 + h^3) - 4x + x^3}{h} =$$

$$\lim_{h \to 0} \frac{4h - 3x^2h - 3xh^2 - h^3}{h} =$$

$$\lim_{h \to 0} \frac{h(4 - 3x^2 - 3xh - h^2)}{h} =$$

$$\lim_{h \to 0} 4 - 3x^2 - 3xh - h^2 = 4 - 3x^2,$$

so the slope of the tangent line at (-1, -3) is $f'(-1) = 4 - 3(-1)^2 = 1$.

2. (10 points) Find the derivative of $f(x) = (2x^2 - \sqrt{x})^2$. Solution: By the chain rule, $f'(x) = 2(2x^2 - \sqrt{x})(4x - \frac{1}{2}x^{-1/2})$.

3. (10 points) Find $\frac{dy}{dx}$ when $y = (x^2 - 7x + 1)(3x - 1/x)$ Solution: By the product rule, $\frac{dy}{dx} = (2x-7)(3x-1/x) + (3+x^{-2})(x^2-7x+1)$. 4. (10 points) Find an equation for the line tangent to the graph of $h(x) = \frac{3x-2}{x^2-1}$ at the point (0,2).

Solution: By the quotient rule, $h'(x) = \frac{3(x^2-1)-2x(3x-2)}{(x^2-1)^2}$, so $h'(0) = \frac{3(-1)-2\cdot0(3\cdot0-2)}{1} = -3$, so the tangent line has equation y - 2 = -3(x - 0) which simplifies to y = -3x + 2.

Solution: By the quotient rule,

$$h'(x) = \frac{f'(x)g(x) - g'(x)f(x)}{(g(x))^2}$$
$$= \frac{3(x^2 - 1) - 2x(3x - 2)}{(x^2 - 1)^2}$$
$$= \frac{3x^2 - 3 - 6x^2 + 4x}{(x^2 - 1)^2}$$
$$= \frac{-3x^2 + 4x - 3}{(x^2 - 1)^2}.$$

Thus h'(0) = -3/1 = -3 and the tangent line is given by y - 2 = -3x or y = -3x + 2.

- 5. (10 points) The total weekly cost in dollars incurred by the Lincoln Record Company in pressing x playing records is given by $C(x) = 3000 + 3x 0.001x^2$, $0 \le x \le 6000$.
 - (a) Find the average cost function \overline{C} . Solution: $\overline{C} = \frac{C(x)}{x} = \frac{3000+3x-0.001x^2}{x} = 3000x^{-1}+3-0.001x$.
 - (b) Find the marginal average cost function $\overline{C'}$. Solution: $\overline{C'} = -3000x^{-2} - 0.001$.
- 6. (10 points) Does the function $f(x) = \sqrt{x+3}$ satisfy the hypothesis of Intermediate Value Theorem over the interval [-2, 6]. If so, find an INTEGER (ie, a whole number) M between f(-2) and f(6), and then find a number c in the interval (-2, 6) such that f(c) = M.

Solution: The only integer between $f(-2) = \sqrt{-2+3} = 1$ and $f(6) = \sqrt{6+3} = 3$ is 2, so M = 2. We need to solve $f(c) = \sqrt{c+3} = 2$. Squaring both sides yields c+3=4, and it follows that c=1.

7. (10 points) Suppose that f'(3) = 2 and f(3) = 1. What is the *y*-intercept of the line tangent to the graph of f at the point (3, 1)?

Solution: y - 1 = 2(x - 3) is equivalent to y = 2x - 5 so the y-intercept is -5.

8. (30 points) Suppose the functions f and g are differentiable. Some of the values of f, f', g, and g' are given in the table. The next six problems refer to these functions f and g. Recall that, for example, the entry 10 in the fifth row and sixth column means that g'(4) = 10.

x	f(x)	f'(x)	x	g(x)	g'(x)
0	2	1	0	5	5
1	7	3	1	7	3
2	5	4	2	4	4
3	1	2	3	2	6
4	3	3	4	6	10
5	6	4	5	3	4
6	0	5	6	1	2
7	4	1	7	0	1

(a) The function h is defined by h(x) = f(g(x)). Use the chain rule to find h'(3).

Solution: Since $h'(x) = f'(g(x)) \cdot g'(x)$ for all $x, h'(3) = f'(g(3) \cdot g'(3) = f'(2)g'(3) = 4 \cdot 6 = 24$.

(b) The function R is defined by R(x) = g(f(x)). Use the chain rule to find R'(2).

Solution: Since $R'(x) = g'(f(x)) \cdot f'(x)$ for all $x, R'(3) = g'(f(2) \cdot f'(2) = g'(5)f'(2) = 4 \cdot 4 = 16$.

(c) The function k is defined by $k(x) = f(x) \cdot g(x)$. Use the product rule to find k'(5).

Solution: Since k'(x) = f'(x)g(x) + g'(x)f(x), k'(5) = f'(5)g(5) + g'(5)f(5) = 36.

(d) The function H is defined by H(x) = f(x)/g(x). Use the quotient rule to find H'(4).

Solution: Since $H'(x) = \frac{f'(x)g(x) - g'(x)f(x)}{(g(x)^2)}$ for all $x, H'(4) = \frac{-4\cdot 3}{36} = -\frac{1}{3}$.

(e) The function K is defined by $K(x) = (f(x) + g(x))^2$. Find K'(6). **Solution:** By the chain rule, $K'(x) = 2(f(x) + g(x)) \cdot (f'(x) + g'(x))$ for all $x, K'(6) = 2(f(6) + g(6)) \cdot (f'(6) + g'(6)) = 2(0 + 1)(5 + 2) = 14$ (f) The function M is defined by M(x) = f(f(x)). Use the chain rule to find M'(0).

Solution: By the chain rule, $M'(x) = f'(f(x) \cdot f'(x))$ for all x. Thus, $M'(0) = f'(f(0)) \cdot f'(0) = f'(2) \cdot f'(0) = 4 \cdot 1 = 4.$

9. (20 points) The altitude of a rocket t seconds into flight is given

$$s = f(t) = -2t^3 + 114t^2 + 480t + 1 \qquad (t \ge 0),$$

where s is measured in feet.

- (a) Find an expression v for the rockets velocity at any time t. Solution: $v(t) = s'(t) = -6t^2 + 228t + 480$.
- (b) Compute the rockets velocity when t = 10, 40, 50, and 70. Interpret your results.

Solution: v(10) = 2160, v(40) = 0, v(50) = -3120, and v(70) = -12960.

(c) Using the results from part b., find the maximum height of the rocket. Hint: at its maximum height, the velocity of the rocket is zero. **Solution:** Since v(40) = 0, it follows that the maximum height is attained at t = 40 seconds. The position of the rocket after 40 seconds is $s(40) = -2 \cdot 40^3 + 114 \cdot 40^2 + 480 \cdot 40 + 1 = 73601$ feet.