June 13, 2001
Name
The total number of points possible is 130. SHOW YOUR WORK

1. (20 points) Use the definition of derivative to find $f^{\prime}(a)$ for the function $f(x)=$ $4 x-x^{3}$. Use this information to find the slope of the line tangent to the graph of f at the point $(-1,-3)$.

Solution:

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} & = \\
\lim _{h \rightarrow 0} \frac{4(x+h)-(x+h)^{3}-\left(4 x-x^{3}\right)}{h} & = \\
\lim _{h \rightarrow 0} \frac{4 x+4 h-\left(x^{3}+3 x^{2} h+3 x h^{2}+h^{3}\right)-4 x+x^{3}}{h} & = \\
\lim _{h \rightarrow 0} \frac{4 h-3 x^{2} h-3 x h^{2}-h^{3}}{h} & = \\
\lim _{h \rightarrow 0} \frac{h\left(4-3 x^{2}-3 x h-h^{2}\right)}{h} & = \\
\lim _{h \rightarrow 0} 4-3 x^{2}-3 x h-h^{2} & =4-3 x^{2},
\end{aligned}
$$

so the slope of the tangent line at $(-1,-3)$ is $f^{\prime}(-1)=4-3(-1)^{2}=1$.
2. (10 points) Find the derivative of $f(x)=\left(2 x^{2}-\sqrt{x}\right)^{2}$.

Solution: By the chain rule, $f^{\prime}(x)=2\left(2 x^{2}-\sqrt{x}\right)\left(4 x-\frac{1}{2} x^{-1 / 2}\right)$.
3. (10 points) Find $\frac{d y}{d x}$ when $y=\left(x^{2}-7 x+1\right)(3 x-1 / x)$

Solution: By the product rule, $\frac{d y}{d x}=(2 x-7)(3 x-1 / x)+\left(3+x^{-2}\right)\left(x^{2}-7 x+1\right)$.
4. (10 points) Find an equation for the line tangent to the graph of $h(x)=\frac{3 x-2}{x^{2}-1}$ at the point $(0,2)$.
Solution: By the quotient rule, $h^{\prime}(x)=\frac{3\left(x^{2}-1\right)-2 x(3 x-2)}{\left(x^{2}-1\right)^{2}}$, so $h^{\prime}(0)=\frac{3(-1)-2 \cdot 0(3 \cdot 0-2)}{1}=$ -3 , so the tangent line has equation $y-2=-3(x-0)$ which simplifies to $y=-3 x+2$.

Solution: By the quotient rule,

$$
\begin{aligned}
h^{\prime}(x) & =\frac{f^{\prime}(x) g(x)-g^{\prime}(x) f(x)}{(g(x))^{2}} \\
& =\frac{3\left(x^{2}-1\right)-2 x(3 x-2)}{\left(x^{2}-1\right)^{2}} \\
& =\frac{3 x^{2}-3-6 x^{2}+4 x}{\left(x^{2}-1\right)^{2}} \\
& =\frac{-3 x^{2}+4 x-3}{\left(x^{2}-1\right)^{2}}
\end{aligned}
$$

Thus $h^{\prime}(0)=-3 / 1=-3$ and the tangent line is given by $y-2=-3 x$ or $y=-3 x+2$.
5. (10 points) The total weekly cost in dollars incurred by the Lincoln Record Company in pressing x playing records is given by $C(x)=3000+3 x-$ $0.001 x^{2}, 0 \leq x \leq 6000$.
(a) Find the average cost function \bar{C}.

Solution: $\bar{C}=\frac{C(x)}{x}=\frac{3000+3 x-0.001 x^{2}}{x}=3000 x^{-1}+3-0.001 x$.
(b) Find the marginal average cost function $\overline{C^{\prime}}$.

Solution: $\overline{C^{\prime}}=-3000 x^{-2}-0.001$.
6. (10 points) Does the function $f(x)=\sqrt{x+3}$ satisfy the hypothesis of Intermediate Value Theorem over the interval $[-2,6]$. If so, find an INTEGER (ie, a whole number) M between $f(-2)$ and $f(6)$, and then find a number c in the interval $(-2,6)$ such that $f(c)=M$.
Solution: The only integer between $f(-2)=\sqrt{-2+3}=1$ and $f(6)=$ $\sqrt{6+3}=3$ is 2 , so $M=2$. We need to solve $f(c)=\sqrt{c+3}=2$. Squaring both sides yields $c+3=4$, and it follows that $c=1$.
7. (10 points) Suppose that $f^{\prime}(3)=2$ and $f(3)=1$. What is the y-intercept of the line tangent to the graph of f at the point $(3,1)$?
Solution: $y-1=2(x-3)$ is equivalent to $y=2 x-5$ so the y-intercept is -5 .
8. (30 points) Suppose the functions f and g are differentiable. Some of the values of f, f^{\prime}, g, and g^{\prime} are given in the table. The next six problems refer to these functions f and g. Recall that, for example, the entry 10 in the fifth row and sixth column means that $g^{\prime}(4)=10$.

x	$f(x)$	$f^{\prime}(x)$		x	$g(x)$
$g^{\prime}(x)$					
0	2	1		0	5
1	7	3		1	7
2	5	4		2	4
3	1	2		3	2
4	4				
4	3	3		4	6
5	6	4		5	3
6	0	5		6	1
7	4	1		7	0

(a) The function h is defined by $h(x)=f(g(x))$. Use the chain rule to find $h^{\prime}(3)$.
Solution: Since $h^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)$ for all $x, h^{\prime}(3)=f^{\prime}\left(g(3) \cdot g^{\prime}(3)=\right.$ $f^{\prime}(2) g^{\prime}(3)=4 \cdot 6=24$.
(b) The function R is defined by $R(x)=g(f(x))$. Use the chain rule to find $R^{\prime}(2)$.
Solution: Since $R^{\prime}(x)=g^{\prime}(f(x)) \cdot f^{\prime}(x)$ for all $x, R^{\prime}(3)=g^{\prime}\left(f(2) \cdot f^{\prime}(2)=\right.$ $g^{\prime}(5) f^{\prime}(2)=4 \cdot 4=16$.
(c) The function k is defined by $k(x)=f(x) \cdot g(x)$. Use the product rule to find $k^{\prime}(5)$.
Solution: Since $k^{\prime}(x)=f^{\prime}(x) g(x)+g^{\prime}(x) f(x), k^{\prime}(5)=f^{\prime}(5) g(5)+$ $g^{\prime}(5) f(5)=36$.
(d) The function H is defined by $H(x)=f(x) / g(x)$. Use the quotient rule to find $H^{\prime}(4)$.
Solution: Since $H^{\prime}(x)=\frac{f^{\prime}(x) g(x)-g^{\prime}(x) f(x)}{\left(g(x)^{2}\right.}$ for all $x, H^{\prime}(4)=\frac{-4 \cdot 3}{36}=-\frac{1}{3}$.
(e) The function K is defined by $K(x)=(f(x)+g(x))^{2}$. Find $K^{\prime}(6)$.

Solution: By the chain rule, $K^{\prime}(x)=2(f(x)+g(x)) \cdot\left(f^{\prime}(x)+g^{\prime}(x)\right)$ for all $x, K^{\prime}(6)=2(f(6)+g(6)) \cdot\left(f^{\prime}(6)+g^{\prime}(6)\right)=2(0+1)(5+2)=14$
(f) The function M is defined by $M(x)=f(f(x))$. Use the chain rule to find $M^{\prime}(0)$.
Solution: By the chain rule, $M^{\prime}(x)=f^{\prime}\left(f(x) \cdot f^{\prime}(x)\right.$ for all x. Thus, $M^{\prime}(0)=f^{\prime}(f(0)) \cdot f^{\prime}(0)=f^{\prime}(2) \cdot f^{\prime}(0)=4 \cdot 1=4$.
9. (20 points) The altitude of a rocket t seconds into flight is given

$$
s=f(t)=-2 t^{3}+114 t^{2}+480 t+1 \quad(t \geq 0)
$$

where s is measured in feet.
(a) Find an expression v for the rockets velocity at any time t.

Solution: $v(t)=s^{\prime}(t)=-6 t^{2}+228 t+480$.
(b) Compute the rockets velocity when $t=10,40,50$, and 70 . Interpret your results.
Solution: $v(10)=2160, v(40)=0, v(50)=-3120$, and $v(70)=$ -12960.
(c) Using the results from part b., find the maximum height of the rocket. Hint: at its maximum height, the velocity of the rocket is zero.
Solution: Since $v(40)=0$, it follows that the maximum height is attained at $t=40$ seconds. The position of the rocket after 40 seconds is $s(40)=-2 \cdot 40^{3}+114 \cdot 40^{2}+480 \cdot 40+1=73601$ feet.

