March 13, 2015 Name
The problems count as marked. The total number of points available is 146. Throughout this test, show your work. Using a calculator to circumvent ideas discussed in class will generally result in no credit. Note please that this test is a composite of the tests for sections 1 and 2 .

1. (24 points) Let

$$
H(x)=3 x^{4}+4 x^{3}-72 x^{2} .
$$

(a) Find $H^{\prime}(x)$ and $H^{\prime \prime}(x)$.

Solution: $H^{\prime}(x)=12 x^{3}+12 x^{2}-144 x$, and $H^{\prime \prime}(x)=36 x^{2}+24 x-144$.
(b) Find all the critical points of H.

Solution: $H^{\prime}(x)=0$ at $x=0, x=3$ and $x=-4$.
(c) Find the intervals over which $H(x)$ is increasing.

Solution: Building the sign chart for $H^{\prime}(x)$, we see that H is increasing precisely over the intervals $(-4,0)$ and $(3, \infty)$.
(d) Discuss the concavity of H.

Solution: H is concave downwards between the roots of $H^{\prime \prime}(x)=0$, $x=\frac{-2 \pm \sqrt{148}}{6}$, and concave upward elsewhere.
2. (12 points) Consider the function f defined by:

$$
f(x)= \begin{cases}3 x-x^{3} & \text { if }-4<x<1 \\ 2 x^{2 / 3} & \text { if } 1<x<10\end{cases}
$$

(a) What is the domain of f ? Write your answer in interval notation.

Solution: $(-4,1) \cup(1,10)$.
(b) What is the slope of the line tangent to the graph of f at the point $x=8$?

Solution: To find $f^{\prime}(8)$ first note that when x is near $8, f(x)=2 x^{2 / 3}$ so $f^{\prime}(x)=2 \frac{2}{3} x^{-1 / 3}$. Thus, $f^{\prime}(8)=2 \frac{2}{3} 8^{-1 / 3}=2 \frac{2}{3} \cdot \frac{1}{2}=\frac{2}{3}$.
(c) Find an equation for th line tangent to the graph of f at $(-3, f(-3))$.

Solution: To find $f^{\prime}(-3)$, we must differentiate the part of f defined for $x<1$. In this area, $f^{\prime}(x)=3-3 x^{2}$, so $f^{\prime}(-3)=3-3(-3)^{2}=-24$. So the line we seek is $y-18=-24(x+3)$
3. (15 points) Let $f(x)=\sqrt{x^{4}-3 x+11}$.
(a) Compute $f^{\prime}(x)$

Solution: $f^{\prime}(x)=\frac{1}{2}\left(x^{4}-3 x+11\right)^{-1 / 2}\left(4 x^{3}-3\right)=\frac{4 x^{3}-3}{2 \sqrt{x^{4}-3 x+11}}$.
(b) What is $f^{\prime}(1)$?

Solution: $f^{\prime}(1)=\frac{4-3}{2 \sqrt{1-3+11}}=1 / 6$
(c) Use the information in (b) to find an equation for the line tangent to the graph of f and at the same time perpendicular to the line $y-3=$ $-6(x+4)$.
Solution: Since $f(1)=3$, using the point-slope form leads to $y-3=$ $f^{\prime}(1)(x-1)=(x-1) / 6$, so $y=x / 6+17 / 6$.
4. (20 points)
(a) Use the product rule for two functions (that you learned in class) to build a product rule for three functions. In other words, suppose $H(x)=$ $f(x) \cdot g(x) \cdot h(x)$. Build a formula for $H^{\prime}(x)$ in terms of the derivatives of f, g and h.
Solution: Use the product rule twice to write $H^{\prime}(x)=f^{\prime}(x)[g(x)$. $h(x)]+f(x)\left[g^{\prime}(x) h(x)+h^{\prime}(x) g(x)\right]=f^{\prime}(x) g(x) h(x)+f(x) g^{\prime}(x) h(x)+$ $f(x) g(x) h^{\prime}(x)$.
(b) Use your rule to find $\frac{d}{d x}(2 x-3)(3 x+1)(5 x-3)$. You must show that you used your 'new' product rule to get credit in this problem. Of course you can differentiate the cubic function to check your answer.
Solution: Let $H(x)=(2 x-3)(3 x+1)(5 x-3)$. Then $H^{\prime}(x)=2(3 x+$ 1) $(5 x-3)+3(2 x-3)(5 x-3)+5(2 x-3)(3 x+1)$.
(c) How many critical points does H have? Discuss your reasoning.

Solution: The derivative is a quadratic polynomial so it can have at most two zeros. Since the discriminant $b^{2}-4 a c=106^{2}-4(90)(6)$ is positive, it has two zeros.
5. (20 points) Let

$$
H(x)=(2 x+7)^{2}\left(x^{2}-9\right)
$$

(a) Find $H^{\prime}(x)$ using the product and chain rules.

Solution: $H^{\prime}(x)=2(2 x+7) \cdot 2\left(x^{2}-9\right)+2 x(2 x+7)^{2}=2(2 x+7)\left[2 x^{2}-\right.$ $\left.18+2 x^{2}+7 x\right]=2(2 x+7)\left(4 x^{2}+7 x-18\right)$.
(b) Find all the critical points of H. Its fine to leave these is radical form.

Solution: Obviously, $x=-7 / 2$ is one critical point. The other two are the zeros of the quadratic $4 x^{2}+7 x-18$. These are $\alpha=\frac{-7-\sqrt{49+288}}{8}$ and $\beta=\frac{-7+\sqrt{49+288}}{8}$. So $\alpha \approx-3.17$ and $\beta \approx 1.42$.
(c) Find the intervals over which $H(x)$ is increasing.

Solution: Building the sign chart for $H^{\prime}(x)$, we see that H is increasing precisely over the intervals $(-7 / 2, \alpha)$ and (β, ∞).
6. (20 points) Let $f(x)=x^{4} / 4-x^{2}-x$. Follow the instructions below to prove that f has exactly one critical point in the interval [1,2]. You may assume that all polynomials are continuous for all real numbers. Thus the hypothesis of IVT is satisfied.
(a) Use the Intermediate Value Theorem to prove that f has at least one critical point in [1, 2].
Solution: Note first that $f^{\prime}(x)=x^{3}-2 x-1$. Next $f^{\prime}(1)=-2$ and $f^{\prime}(2)=3$, so we can invoke IVT to guarantee a zero between 1 and 2 .
(b) Use the Big Theorem we discussed in class (about finding intervals where a function increases) to prove that f can have at most 1 .
Solution: First note that $f^{\prime \prime}(x)=3 x^{2}-2$ which has two zeros, both less than 1. Since $f^{\prime \prime}(x)>0$ on $[1,2]$, it follows that $f^{\prime}(x)$ is increasing throughout the interval and so it has at most one zero.
7. (20 points) Build a cubic polynomial $p(x)$ that has a relative maximum at $x=-2$ and a relative minimum at $x=3$.

Solution: The derivative of $p(x)$ must have zeros at $x=-2$ and $x=3$, so we can guess to write $p^{\prime}(x)=(x+2)(x-3)=x^{2}-x+6$. So $p(x)$ could be a multiple of $x^{3} / 3-x^{2} / 2+6 x$. One nice multiple is $p(x)=2 x^{3}-3 x^{2}+36 x$, which we can analyze to see that it works.
8. (35 points) Consider the table of values given for the functions f, f^{\prime}, g, and g^{\prime} :

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
0	2	1	3	2
1	4	6	2	5
2	6	4	3	4
3	1	2	5	3
4	3	5	2	6
5	5	3	4	1
6	0	3	2	4

(a) Let $L(x)=\sqrt{x}+f(x)+g(x)$. Compute $L(4)$ and $L^{\prime}(4)$.

Solution: $L(4)=\sqrt{4}+f(4)+g(4)=2+3+2=7$ and $L^{\prime}(x)=$ $\frac{1}{2} x^{-1 / 2}+f^{\prime}(x)+g^{\prime}(x)$, so $L^{\prime}(4)=\frac{1}{2} 4^{-1 / 2}+f^{\prime}(4)+g^{\prime}(4)=11.25$.
(b) Let $U(x)=x^{2} f(x)$. Compute $U(3)$ and $U^{\prime}(3)$.

Solution: First, note that $U(3)=9 f(3)=9$. By the product rule, $U^{\prime}(x)=2 x f(x)+x^{2} f^{\prime}(x)$, so $U^{\prime}(3)=2 \cdot 3 \cdot f(3)+9 \cdot f^{\prime}(3)=6+18=24$.
(c) Let $K(x)=f\left(x^{2}\right) / x$. Compute $K(2)$ and $K^{\prime}(2)$

Solution: First, $K(2)=f(4) / 2=3 / 2$. Next $K^{\prime}(x)=\left[f^{\prime}\left(x^{2}\right) 2 x \cdot x-\right.$ $\left.f\left(x^{2}\right)\right] \div x^{2}$, so $K^{\prime}(2)=\left[f^{\prime}(4) \cdot 8-f\left(2^{2}\right)\right] \div 4=[40-3] / 4=9.25$.
(d) Let $Z(x)=(2 x+g(x))^{3}$. Compute $Z(1)$ and $Z^{\prime}(1)$.

Solution: First $Z(1)=(2+g(1))^{3}=64$. By the chain rule, $Z^{\prime}(x)=$ $3(2 x+g(x))^{2}\left[2+g^{\prime}(x)\right]$ so $Z^{\prime}(1)=3 \cdot 4^{2}[2+5]=336$.
(e) Let $Q(x)=g\left(x^{2}+f(2 x)\right)$. Compute $Q(0)$ and $Q^{\prime}(0)$.

Solution: First, $Q(0)=g(0+f(0))=g(2)=3$. Again by chain rule, $Q^{\prime}(x)=g^{\prime}\left(x^{2}+f(x)\right) \cdot\left(2 x+f^{\prime}(2 x) \cdot 2\right.$ so $Q^{\prime}(0)=g^{\prime}(f(0))\left(f^{\prime}(0) \cdot 2=\right.$ $4 \cdot 1 \cdot 2=8$.
9. (24 points) Consider the polynomial $g(x)=2 x^{3}+3 x^{2}-36 x+10$.
(a) Find the two critical points of g.

Solution: Since $g^{\prime}(x)=6 x^{2}+6 x-36$, it follows that $x=2$ and $x=-3$ are critical points.
(b) Build the sign chart for the function $g^{\prime}(x)$.

Solution: $g^{\prime}(x)<0$ precisely on $(-3,2)$.
(c) Classify the critical points of g as (a) relative maxima, (b) relative minima, or (c) imposters.
Solution: $x=-3$ is the location of a relative maximum, and $x=2$ is the place where a relative minimum occurs.
(d) Find an interval where g is concave upwards.

Solution: Since $g^{\prime \prime}(x)>0$ if $x>-1 / 2$, it follows that g is concave upwards on $(-1 / 2, \infty)$.
(e) Find a point of the graph of g where the tangent line is parallel to the line $y=-36 x-4$.
Solution: The equation $g^{\prime}(x)=6 x^{2}+6 x-36=-36$ has two solutions, $x=0$ and $x=-1$.

