June 13, 2001 Name

The total number of points possible is 130. SHOW YOUR WORK

- 1. (20 points) Use the definition of derivative to find f'(a) for the function $f(x) = 4x x^3$. Use this information to find the slope of the line tangent to the graph of f at the point (-1, -3).
- 2. (10 points) Find the derivative of $f(x) = (2x^2 \sqrt{x})^2$.
- 3. (10 points) Find $\frac{dy}{dx}$ when $y = (x^2 7x + 1)(3x 1/x)$
- 4. (10 points) Find an equation for the line tangent to the graph of $h(x) = \frac{3x-2}{x^2-1}$ at the point (0,2).
- 5. (10 points) The total weekly cost in dollars incurred by the Lincoln Record Company in pressing x playing records is given by $C(x) = 3000 + 3x 0.001x^2$, $0 \le x \le 6000$.
 - (a) Find the average cost function \overline{C} .
 - (b) Find the marginal average cost function $\overline{C'}$.
- 6. (10 points) Does the function $f(x) = \sqrt{x+3}$ satisfy the hypothesis of Intermediate Value Theorem over the interval [-2, 6]. If so, find an INTEGER (ie, a whole number) M between f(-2) and f(6), and then find a number c in the interval (-2, 6) such that f(c) = M.
- 7. (10 points) Suppose that f'(3) = 2 and f(3) = 1. What is the *y*-intercept of the line tangent to the graph of f at the point (3, 1)?

8. (30 points) Suppose the functions f and g are differentiable. Some of the values of f, f', g, and g' are given in the table. The next six problems refer to these functions f and g. Recall that, for example, the entry 10 in the fifth row and sixth column means that g'(4) = 10.

x	f(x)	f'(x)	x	g(x)	g'(x)
0	2	1	0	5	5
1	7	3	1	7	3
2	5	4	2	4	4
3	1	2	3	2	6
4	3	3	4	6	10
5	6	4	5	3	4
6	0	5	6	1	2
7	4	1	7	0	1

- (a) The function h is defined by h(x) = f(g(x)). Use the chain rule to find h'(3).
- (b) The function R is defined by R(x) = g(f(x)). Use the chain rule to find R'(2).
- (c) The function k is defined by $k(x) = f(x) \cdot g(x)$. Use the product rule to find k'(5).
- (d) The function H is defined by H(x) = f(x)/g(x). Use the quotient rule to find H'(4).
- (e) The function K is defined by $K(x) = (f(x) + g(x))^2$. Find K'(6).
- (f) The function M is defined by M(x) = f(f(x)). Use the chain rule to find M'(0).
- 9. (20 points) The altitude of a rocket t seconds into flight is given

$$s = f(t) = -2t^3 + 114t^2 + 480t + 1 \qquad (t \ge 0),$$

where s is measured in feet.

- (a) Find an expression v for the rockets velocity at any time t.
- (b) Compute the rockets velocity when t = 10, 40, 50, and 70. Interpret your results.
- (c) Using the results from part b., find the maximum height of the rocket. Hint: at its maximum height, the velocity of the rocket is zero.