June 13, 2001
Name
The total number of points possible is 130. SHOW YOUR WORK

1. (20 points) Use the definition of derivative to find $f^{\prime}(a)$ for the function $f(x)=$ $4 x-x^{3}$. Use this information to find the slope of the line tangent to the graph of f at the point $(-1,-3)$.
2. (10 points) Find the derivative of $f(x)=\left(2 x^{2}-\sqrt{x}\right)^{2}$.
3. (10 points) Find $\frac{d y}{d x}$ when $y=\left(x^{2}-7 x+1\right)(3 x-1 / x)$
4. (10 points) Find an equation for the line tangent to the graph of $h(x)=\frac{3 x-2}{x^{2}-1}$ at the point $(0,2)$.
5. (10 points) The total weekly cost in dollars incurred by the Lincoln Record Company in pressing x playing records is given by $C(x)=3000+3 x-$ $0.001 x^{2}, 0 \leq x \leq 6000$.
(a) Find the average cost function \bar{C}.
(b) Find the marginal average cost function $\overline{C^{\prime}}$.
6. (10 points) Does the function $f(x)=\sqrt{x+3}$ satisfy the hypothesis of Intermediate Value Theorem over the interval $[-2,6]$. If so, find an INTEGER (ie, a whole number) M between $f(-2)$ and $f(6)$, and then find a number c in the interval $(-2,6)$ such that $f(c)=M$.
7. (10 points) Suppose that $f^{\prime}(3)=2$ and $f(3)=1$. What is the y-intercept of the line tangent to the graph of f at the point $(3,1)$?
8. (30 points) Suppose the functions f and g are differentiable. Some of the values of f, f^{\prime}, g, and g^{\prime} are given in the table. The next six problems refer to these functions f and g. Recall that, for example, the entry 10 in the fifth row and sixth column means that $g^{\prime}(4)=10$.

x	$f(x)$	$f^{\prime}(x)$
0	2	1
1	7	3
2	5	4
3	1	2
4	3	3
5	6	4
6	0	5
7	4	1

x	$g(x)$	$g^{\prime}(x)$
0	5	5
1	7	3
2	4	4
3	2	6
4	6	10
5	3	4
6	1	2
7	0	1

(a) The function h is defined by $h(x)=f(g(x))$. Use the chain rule to find $h^{\prime}(3)$.
(b) The function R is defined by $R(x)=g(f(x))$. Use the chain rule to find $R^{\prime}(2)$.
(c) The function k is defined by $k(x)=f(x) \cdot g(x)$. Use the product rule to find $k^{\prime}(5)$.
(d) The function H is defined by $H(x)=f(x) / g(x)$. Use the quotient rule to find $H^{\prime}(4)$.
(e) The function K is defined by $K(x)=(f(x)+g(x))^{2}$. Find $K^{\prime}(6)$.
(f) The function M is defined by $M(x)=f(f(x))$. Use the chain rule to find $M^{\prime}(0)$.
9. (20 points) The altitude of a rocket t seconds into flight is given

$$
s=f(t)=-2 t^{3}+114 t^{2}+480 t+1 \quad(t \geq 0)
$$

where s is measured in feet.
(a) Find an expression v for the rockets velocity at any time t.
(b) Compute the rockets velocity when $t=10,40,50$, and 70 . Interpret your results.
(c) Using the results from part b., find the maximum height of the rocket. Hint: at its maximum height, the velocity of the rocket is zero.

